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Abstract

A growing population and an increased demand for water resources have resulted
in a global trend of groundwater depletion. Arid and semi-arid climates are
particularly susceptible, often relying on groundwater to support large population
centers or irrigated agriculture in the absence of sufficient surface water resources.
In an effort to increase the security of groundwater resources, managed aquifer
recharge (MAR) programs have been developed and implemented globally. MAR is
the approach of intentionally harvesting and infiltrating water to recharge depleted
aquifer storage. California is a prime example of this growing problem, with three
cities that have over a million residents and an agricultural industry that was
valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over
100 km3 (since 1962) indicates a clear disparity between surface water supply and
water demand within the state. In the face of groundwater overdraft and the antic-
ipated effects of climate change, many new MAR projects are being constructed or
investigated throughout California, adding to those that have existed for decades.
Some common MAR types utilized in California include injection wells, infiltration
basins (also known as spreading basins, percolation basins, or recharge basins), and
low-impact development. An emerging MAR type that is actively being investigated
is the winter flooding of agricultural fields using existing irrigation infrastructure and
excess surface water resources, known as agricultural MAR. California therefore
provides an excellent case study to look at the historical use and performance of
MAR, ongoing and emerging challenges, novel MAR applications, and the potential
for expansion of MAR. Effective MAR projects are an essential tool for increasing
groundwater security, both in California and on a global scale. This chapter aims to
provide an overview of the most common MAR types and applications within the
State of California and neighboring semi-arid regions.

Keywords: Agricultural water use; Drought; Groundwater depletion; Managed aquifer
recharge; Water resources management
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1. INTRODUCTION

A growing population and an increased demand for water resources
have resulted in a global trend of groundwater depletion. Arid and semi-
arid climates are particularly susceptible, often relying on groundwater to
support large population centers or irrigated agriculture in the absence of
sufficient surface water resources.1 For example, it is estimated that 43%
of global consumptive water use for agricultural irrigation comes from
groundwater, with the most agricultural land irrigated with groundwater
in China, India, and the United States.2 Natural recharge is inherently
limited in arid and semi-arid climates, and the anticipated effects of climate
change on recharge in these regions are largely uncertain.3 In an effort to
increase the security of groundwater resources, managed aquifer recharge
(MAR) programs have been developed and implemented globally.4 MAR
is the approach of intentionally harvesting and infiltrating water to recharge
depleted aquifer storage (Fig. 1).

California is a prime example of this growing problem, with three cities
that have over a million residents6 and an agricultural industry that was
valued at $47 billion dollars in 2015.7 As a result of the ongoing depletion
of groundwater reserves in California, groundwater aquifers currently have
the capacity to store an additional 44 to 80 km3 of water above the natural

Figure 1 Groundwater management schematic including managed aquifer recharge
methods.5
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groundwater reservoir capacity, for a total storage capacity three times the
amount currently provided by surface water reservoirs.8e11 California is
marked by having the largest climatic variability in the United States,
challenging water resource managers’ ability to meet water supply needs
and mitigate flood risks.12 The present-day groundwater overdraft of
over 100 km3 (since 1962) indicates a clear disparity between surface water
supply and water demand within the state. Climate change models predict
an increase in aridity and the occurrence of droughts, which could
exacerbate groundwater overdraft in the state.13 However, while total
annual precipitation is expected to decrease, precipitation frequency and
magnitude is expected to increase, potentially leading to greater surface
runoff from precipitation in excess of infiltration, reduced groundwater
recharge, and more extreme flood events during wet years.12,14e16 Climate
change thus poses a serious concern for the future management of surface
and groundwater supplies. In the face of groundwater overdraft and the
anticipated effects of climate change, many new MAR projects are being
constructed or investigated throughout California, adding to those that
have existed for decades.17 California therefore provides an excellent
case study to look at the historical use and performance of MAR, ongoing
and emerging challenges, novel MAR applications, and the potential for
expansion of MAR.

Effective MAR projects are an essential tool for increasing groundwater
security, both in California and on a global scale. In order for MAR projects
to be effective, they must be appropriately tailored to the local needs and
constraints. There are many existing types of MAR, which vary in land
availability requirements, source water, project objectives, and other factors.
Some common MAR types utilized in California include injection wells,
infiltration basins (also known as spreading basins, percolation basins, or
recharge basins), and low-impact development (LID; Table 1). An emerging
MAR type that is actively being investigated is the winter flooding of agri-
cultural fields using existing irrigation infrastructure and excess surface water
resources, known as agricultural MAR (ag-MAR). Many of these MAR
types can be considered through the lens of conjunctive use, which is the
coordinated management of surface water and groundwater supplies to
maximize the sustainable yield of the overall water resource.18 When surface
water is used to recharge groundwater, MAR can be viewed as an expansion
of conjunctive use,19 and vice versa.

This chapter aims to provide an overview of the most common MAR
types and applications within the State of California and neighboring
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semi-arid regions. Based on differences in project constraints and project
objectives, this chapter reviews both traditional and new, promising MAR
approaches in urban, agricultural, and coastal areas, respectively (Fig. 2).
Urban areas typically have limited land availability and may rely on injection
wells, infiltration basins, or LID and utilize developed surface water, run-off,
or recycled water. Agricultural areas have extensive land surfaces for
spreading water and can utilize existing irrigation infrastructure but are
also limited by sporadic surface water availability depending on location.
Coastal regions differ from agricultural and urban areas in that prevention
or mitigation of seawater intrusion is often the primary MAR objective.
Each section introduces the most common MAR types found in urban,
coastal, and agricultural regions within California and discusses their
strengths, limitations, and future implications. This chapter concludes with

Figure 2 Proposed and funded managed aquifer recharge projects in California since
2000.17
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a discussion of environmental benefits of MAR in the context of California’s
new groundwater legislation, opportunities for future expansion of MAR,
and potential concerns or barriers to the expansion of MAR.

2. MANAGED AQUIFER RECHARGE IN URBAN
SETTINGS

California has some of the oldest and largest urban MAR projects
in the United States to secure urban water supply, improve groundwater
quality, and mitigate negative impacts of groundwater overdraft (i.e.,
subsidence).20 Sources and pathways for groundwater recharge in
urban environments are more numerous and unique compared with rural
environments,21 which provide both opportunities and challenges for
MAR implementation. MAR projects that provide flood protection
have been practiced as early as 1910 in Los Angeles,22,23 while water
qualityefocused urban MAR projects were introduced later in the 20th
century (e.g., 1990s), when the US Environmental Protection Agency
(EPA) began regulating stormwater quality after passage of the US
Clean Water Act in 1972.24,25 MAR programs in California’s urban centers
have changed in size, purpose, and benefits over the past century.
While enhancing water supply was the primary goal of urban, centralized
MAR projects (i.e., large footprint, >1 ha in area, >1,000,000 m3/year
recharge volume) prior to the 1980s, recently implemented decentralized
(i.e., small footprint, <1 ha in area, <10,000 m3/year recharge volume)
MAR projects are found to bring diverse benefits such as conjunctive
use, flood protection, stormwater quality management, and groundwater
recharge.17

2.1 Centralized Managed Aquifer Recharge Approaches
In Los Angeles and Orange County, surface reservoirs for flood control
(e.g., Ivanhoe and Silver Lake reservoirs) and infiltration basins (e.g., Prado
Dam) were built by federal and local agencies in response to significant
flooding between 1900 and 1950.22,26 These projects represent some of
the best studied centralized urban MAR projects in California today, char-
acterized by infiltration volumes on the order of more than 100,000 m3/
year and infiltration areas on the order of tens of hectares.27 Infiltration ba-
sins are a relatively low-cost, simple technology that has been implemented
extensively to recharge groundwater in California. Infiltration basins require
land and dedicated facilities constructed solely for recharge. Compared with
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the more maintenance-intensive dry wells and injection wells, infiltration
basins are often preferred because of their relatively low capital cost and
low annual operation and maintenance costs.27e29 However, a primary
drawback of infiltration basins is their large land area requirements compared
with well technologies, which can become a capital cost factor in areas
where property prices are high.29

Since its inception in the 1930s, the Orange County Water District
(OCWD) has employed a variety of technologies to secure water supply
to its population, which has grown from 120,000 in the 1930s to 2.4 million
today.26 Early MAR efforts in Orange County began with increasing the
natural percolation capacity of the Santa Ana River.26 As natural recharge
proved insufficient to offset increasing water demand, imported water
from the Colorado River was purchased starting in 1949 and recharged in
the 26 ha Anaheim Lake (Fig. 3)30 since 1958, the OCWD’s26

first infiltra-
tion basin. Since then, treated Colorado River water has been delivered to

Figure 3 The location of Orange County Water District, its recharge facilities, and
geological gaps.30
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25 infiltration basins (including Anaheim Lake) within Orange County.
However, decreasing reliability and increasing costs of imported water led
water agencies in Southern California look at alternative water sources,
particularly recycled wastewater. In 1962, Los Angeles County imple-
mented the first large-scale infiltration project of secondary-treated waste-
water in California using the Montebello Forebay; in 1976 the Orange
County Water Factory 21 became the first facility permitted by California’s
Department of Public Health and Regional Water Quality Control Board to
tertiary treat, blend, and inject wastewater into drinking water aquifers.31

The Water Factory 21 was replaced by the Groundwater Replenishment
(GWR) System in 2008, a larger wastewater treatment plant, which now
feeds the Miraloma Basin, a 4-ha infiltration basin, at a rate of
36,990,000 m3 (30,000 acre-feet) annually.

Los Angeles water managers have shifted from local, to imported, to
recycled and stormwater sources over the last 80 years23,31 while updating
the infrastructure of infiltration basins to match the changing water sources.
In Los Angeles, large centralized flood control structures (e.g., surface reser-
voirs, lined stormwater flow channels) were first engineered through federal
and regional projects to capture large but infrequent runoff to reduce flood
risk.22 As groundwater supply diminished, flood control structures were
altered to capture more runoff during rain events, resulting in recharge of
0.09 km3 of stormwater (71,144 acre-feet) county-wide in 2016.32 In addi-
tion, implementation of flexible infrastructure such as in-channel inflatable
dams at the San Gabriel infiltration project has increased infiltration
throughout the basin by replacing sand and gravel levees that would wash
out during high flows.33 A new, 20-year plan expects to produce a twofold
increase in recharge, bringing the city’s annual recharge from 0.03 to
0.08 km3 (26,671 acre-feet to 64,022 acre-feet) by 2035.23 The bulk of
the recharge increase is expected to come from 19 centralized stormwater
capture projects at various scales that combine flood control and ground-
water recharge (Fig. 4).

The use of infiltration basins in urban settings has also raised questions
about the impact of infiltration basins on groundwater quality in settings
where groundwater flow velocities are high, potentially increasing the risk
of groundwater contamination with surface water or stormwater contami-
nants.34 O’Leary et al.34 for example, observed groundwater flow velocities
of 13 m/day in an alluvial aquifer near Stockton, California. However,
water quality monitoring in the aquifer near the recharge site showed that
concentrations in dissolved solids, dissolved organic carbon, and arsenic in
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the groundwater decreased, indicating that the recharged surface water had a
diluting effect on groundwater quality. At the same time, they observed low
concentrations in herbicides typically found in stormwater runoff, indicating
that the risk of groundwater contamination with pollutants present in the
recharged surface water was low.34,35

2.1.1 Conjunctive Use and In-Lieu Recharge
In addition to innovations in infrastructure, urban water agencies across Cal-
ifornia have found it necessary to enhance recharge management strategies
through soft technologies such as conjunctive use and in-lieu recharge of
groundwater. The Santa Clara Valley Water District was among the first
agencies to implement a conjunctive use program36 to support local water
supply reliability dating back to the 1930s. In response to declining ground-
water levels and resulting land subsidence in the 1960s, the district began
importing and treating surface water to significantly reduce the direct use

Figure 4 San Gabriel River channel and infiltration basin recharging stormwater,
treated wastewater, and imported water to the Los Angeles Central groundwater basin.

224 Helen E. Dahlke et al.



of groundwater, also known as in-lieu recharge.36 In a modeling study,
Hanson37 used MODFLOW-2000, the United States Geological Survey
(USGS) three-dimensional finite-difference model, to determine ground-
water flow in the Santa Clara Valley, a region characterized by complex
aquifer layering, faults, and stream channels. The model determines the sup-
ply and demand components of the water inflows and outflows of the valley
for six climate cycles (i.e., dry, wet periods) since 1800. The study highlights
the need to optimize where groundwater is pumped in the valley depending
on water demand and groundwater management goals.

Despite its clear benefits, implementation of conjunctive use programs is
often dependent on political and institutional factors.38 In a recent example,
the San Francisco Public Utilities Commission (SFPUC) and its partner
agencies engaged in a formal collaboration to coordinate surface and
groundwater supply beyond city boundaries (Fig. 5).39 In wet years, SFPUC
would supply the partner agencies with surface water to promote in-lieu
recharge of the Southern Westside Basin,40 resulting in approximately
0.08 km3 (61,000 acre-feet) of groundwater that remains stored in the ba-
sin.41 In dry years, up to 16 new recovery wells, with an average pumping
capacity of 0.01 km3/year (8100 acre-feet/year), would provide a secure
water supply to the city of San Francisco.42 In other cases, economic incen-
tives have been proven as a useful tool to promote in-lieu water use. For
example, to promote in-lieu recharge within the OCWD, a financial incen-
tive program was developed between 1977 and 2007. The OCWD in-lieu
program paid the price difference between the more expensive imported
water and the less expensive local groundwater to replace groundwater
pumping with imported surface water, resulting in 1.1 km3 (900,000 acre-
feet) of net recharge over the next 30 years. On average, the in-lieu program
in OCWD only contributed to 3% of total groundwater recharge; however,
during wet years, in-lieu recharge reached a similar magnitude (e.g.,
0.04 km3 in 2011) as other water sources within the district (e.g., direct
recharge with Santa Ana River, imported, or recycled water).

2.1.2 Use of Treated Wastewater in Centralized Urban Managed
Aquifer Recharge

Over the last several decades’ treated wastewater (also referred to as recycled
water) has become an increasingly important water source for urban areas.
One of the earliest treated wastewater reuse projects in the United States
was created in Los Angeles County in 1929 to provide irrigation water
for public parks. Since then, improvements in treatment technology have
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allowed use of recycled water to expand. Estimates within the last decade
state that approximately 7%e8% of total wastewater in the United States
is reused.43 Recycled water has the potential to provide a reliable water sup-
ply source for recharge, although water quality concerns exist related to po-
tential pathogen presence and disinfection byproducts from chlorine
treatment.44 Research on pathogen presence in recharge projects has shown
that bacterial pathogens have limited survival rates (T90 <3 days) in aquifers
of sand or limestone, but enteric viruses such as the adenovirus have been
found to survive much longer (T90 ¼ >200 days) in the same conditions.45

While Sidhu et al.45 found persistence of viruses in aquifers, another study
across the States of California, Arizona, and Colorado using natural treat-
ment riverbank filtration and soil-aquifer treatment found that a 99%

Figure 5 Westside basin of the San Francisco Public Utilities Commission (SFPUC) dis-
trict area and locations of 16 recovery wells used by the SFPUC for water supply during
drought years.
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removal of adenovirus could be achieved within about 15 days residence
time.46 These differing results support the hypothesis that pathogen survival
and attenuation in aquifers are influenced by site-specific geochemical fac-
tors, as well as the particular species of pathogen.45 This is especially impor-
tant in urban aquifers where limited space can result in short hydrogeologic
travel times, as is the case for the Los Angeles Montebello Forebay MAR
operation where infiltration basins lie within 150 m or less than 10 weeks
travel time of groundwater supply wells, failing to meet California regula-
tions from 2006 that require at least 150 m or 6 months of travel time for
recharge facilities using recycled water (Table 1).47 MAR projects using
recycled water require differing levels of pretreatment depending on the
final intended use; in California, for example, groundwater recharge regu-
lations require advanced treatment including reverse osmosis and advanced
oxidation.48 In addition, California is one of only four US states that has
treatment regulations for groundwater recharge for nonpotable uses, such
as prevention of land subsidence, and one of only three US states with reg-
ulations for indirect potable reuse, which includes recharge of recycled water
for potable reuse.49

Orange County’s GWR System in Southern California provides an
example of MAR using high-quality advanced treated wastewater. The
GWR System was designed to produce advanced treated recycled water
through a process involving microinfiltration, reverse osmosis, and advanced
oxidation treatment with hydrogen peroxide and ultraviolet light expo-
sure.50 Because the purification process removes nearly all minerals from
the water, lime is introduced to stabilize the pH of the final product. The
treated water is then used to recharge seawater intrusion barriers as well as
local infiltration basins. The final product from the treatment system has
been found to remain within all state and federal drinking water standards,
with a final total dissolved solids (TDS) concentration of approximately
45 mg/L, which is well below the typical TDS of imported surface water
to the region.51 While California’s requirements for recycled water recharge
are considered cautious from an international perspective,52 other govern-
mental regulations may require less stringent treatment, depending on the
application.

2.2 Decentralized Managed Aquifer Recharge Approaches
As space and economic resources for large-scale centralized infiltration
projects have diminished over the last 100 years, regionally distributed or
decentralized programs have become more attractive to urban planners.53,54
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Decentralized projects focus on infiltrating smaller volumes of water, on
the order of 10e100 m3 per rain event, through small projects with a
footprint of 10 m2 to 1 ha.23,55 Recent studies on decentralized
groundwater infiltration in urban settings have focused primarily on the
implementation of LID, an approach piloted in MD, USA, which is
designed to mitigate the negative effects of urbanization (e.g., an increase
in impervious surfaces) on surface runoff.56e58 LID practices include
pervious pavement, vegetated swales, bioretention basins, and small-scale
infiltration basins.58e60 In addition to the previously mentioned LID
practices, many urban areas in California and neighboring states such as
Arizona use drywells, rainwater capture, reuse projects, and rooftop runoff
infiltration to increase urban infiltration. The Los Angeles metropolitan
area serves as a leader in California for LID planning and implementation.
In 2010 the Los Angeles and San Gabriel Rivers Watershed Council
conducted a modeling study to determine the amount of regional
groundwater that could be augmented through decentralized stormwater
management and groundwater recharge methods.61 The 2015 urban water
management plan of the Los Angeles Department of Water and Power, for
example, estimated that about 0.04e0.08 km3/year of recharge could be
captured through decentralized projects in addition to the existing incidental
decentralized capture projects (0.04 km3/year).23

Under the umbrella of LID projects, bioretention systems use vegetation,
such as shrubs or trees, in low-lying areas in the landscape to treat
contaminated water through physical, chemical, and biological processes.58

Vegetated swales or bioswales are similar to bioretention basins; however,
they generally use grass instead of diverse vegetation, and they have a
shallower topographic profile and therefore smaller capacity to capture
stormwater.60 Bioretention basins and vegetated swales are often used in
combination with other decentralized measures such as dry wells, cisterns,
or infiltration basins.59 They typically do not support capture of large
volumes of stormwater because infiltration rates depend on local soil
properties. However, they provide several benefits such as slowing
stormwater runoff, removing pollutants, and settling out suspended solids.
Studies on the pollutant removal efficacy of bioretention basins have shown
significant reductions in heavy metals such as copper (43%e97%), lead (70
to >95%), and zinc (64 to >95%),62 and nutrients such as total nitrogen
(31%e69%; Table 2).63

Bioretention basins and vegetated swales tend to remove high levels of
metals and nitrogen, while often having varied effects on other contaminants
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such as suspended solids, phosphorus, salts, and pathogens as a result of the
organic matter or legacy pollutants contained in the basins.58 Results from
monitoring a bioretention basin in Los Angeles showed reductions in copper
(33%), lead (60%), and total suspended solids (15%),64 which agree with re-
movals reported in other literature.58 Infiltration and recharge of untreated
stormwater could potentially have adverse effects on the receiving ground-
water. However, Dallman and Spongberg65 looked at stormwater infiltra-
tion sites in industrial, commercial, and residential areas in Los Angeles
County and found no increases in metals and fecal coliform concentrations
in groundwater and no evident buildup of contaminant concentrations in
soils, with the exception of a metal recycling plant, which experienced slight
increases in copper (8%) and zinc (8%).65 Collecting runoff from rooftops
presents an additional decentralized water source for groundwater recharge
in urban areas, which can be implemented without the need for significant
infrastructure or retrofitting. A notable concern of using rooftop runoff for
groundwater recharge, however, is water quality, since rooftop runoff can
contain contaminants such as pathogens, metals, and other materials either
leached from rooftop materials or deposited from airborne pollution. An
investigation of rooftop runoff in rural New Zealand found the presence
of lead, copper, zinc, and arsenic above national drinking water standards,
as well as the presence of potential microbial pathogens such as Salmonella,
Aeromonas, and Cryptosporidium.66 In industrial or commercial areas, runoff
from metal-roofed buildings may be a significant source of elevated metal
concentrations in runoff. For old metal rooftops in acidic rainwater condi-
tions, metal concentrations in runoff have been found as high as 2230 mg/
L for zinc and 1510 mg/L for copper.67 Rooftop runoff quality has been
shown to be affected by roof material and rainwater quality;67 thus proper
management is necessary to prevent contamination risks from this potential
water source.

Recharge using deep infiltration techniques such as drywells (i.e.,
infiltration galleries) offers additional options for urban MAR portfolios.
Drywells are wells drilled for the purpose of groundwater recharge,
which stop short of the water table. The general design of a drywell
including pretreatment is included in Fig. 6. There is a perceived risk
that drywells offer more direct passage of contaminants to groundwater
aquifers because they bypass the unsaturated zone and soil filtration pro-
cesses.68 Therefore drywells are often combined with LID structures to
provide pretreatment of the source water before infiltration.59 In Califor-
nia, drywells have been implemented since the 1950s to augment
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agricultural groundwater sources.69 Urban use, however, has only received
promotion through demonstration projects since the late 1990s and local
ordinances in the last 10 years.70e72 Drywells are a common MAR practice
in the neighboring state of Arizona, which has installed a high percentage
of the total drywells present in the United States.68 A study in Arizona
examined four drywells receiving water from residential, industrial, or
commercial sites to test whether the drywells caused groundwater contam-
ination.73 The drywells were not found to be a major source of ground-
water pollution for the study region although some organic pollutants
such as ethylbenzene and toluene were detected in drywell sediments.73

A broader review of drywell effects on groundwater quality in the United
States found that reported cases of groundwater contamination from dry-
wells is often the result of contaminant spills in the vicinity of the drywells
or inappropriate use of drywells, rather than deficiencies in the well
construction itself.68 Monitoring of groundwater quality up- and down-
gradient of two drywells near Elk Grove, California, revealed that the
groundwater contained lower concentrations of some metals (aluminum
and manganese) and higher concentrations of others (arsenic and chro-
mium) compared with the infiltrated stormwater, which raised some con-
cerns about desorption of metals present in the soil.74

Figure 6 General design of a drywell, including pretreatment with a grass swale and
sedimentation chamber.68
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Other decentralized MAR approaches are so-called capture and reuse
or on-site direct use projects. Capture and reuse projects encompass a
wide variety of water storage techniques (e.g., constructed aquifer storage
and recovery systems, modular underground storage tanks, rain barrels) that
are designed to capture precipitation, hold it for a period of time, and reuse
the stored water or slowly release it over time for irrigation or groundwater
recharge.60 Often the rainwater storage systems consist of cisterns con-
structed above or below ground that can generally hold about 1 m3 in
household applications to 1000 m3 in public applications such as parks.
TreePeople in Los Angeles installed a 14 m3 cistern at a typical house
and a 416 m3 cistern at a school as part of a demonstration project in
1998 and 2005, respectively.70 The scale of each project leads to varying
treatment needs for the captured rainwater: at the house, a first-flush sys-
tem was installed to divert the low-quality initial runoff of each storm,
while at the school, a swirl-concentrator was installed to provide sedimen-
tation and removal of floating pollutants, and chlorination was added to
disinfect the stored water. Capture and reuse projects using cisterns
have become popular in recent years; however, alternative designs have
been proposed, such as the use of constructed aquifer storage and recovery
systems (also known as geostorage systems), which are preferred to capture
runoff at sites with poor soil infiltration.75 A modeling study conducted by
Taylor et al.75 compared the cost and benefits (e.g., runoff volume that
could be captured, end use of water) of a geostorage system and a modular
storage tank system for a 34-ha site in Riverside County. The capture and
reuse project had the goal to retain the 85th percentile rainfallerunoff
event (a common standard in urban water management in California and
known as the water quality volume) on site. Both capture systems were
modeled using the EPA model Storm Water Management Model
(SWMM). The geostorage system was simulated as an open aquifer system
allowing evaporation under pervious pavement, while the below-grade
modular tanks were simulated as closed conduit system. The results showed
that a geostorage system with a capacity of 22,700 m3 provided the more
cost-effective solution, capturing 61% of the total rainfallerunoff volume,
providing 38% of the property’s irrigation needs and meeting the local wa-
ter quality volume requirements (88% of the water quality events that
occurred over the 17-year simulation period were captured).75 In contrast,
the modular storage tanks could not meet the water quality volume re-
quirements since it only captured 44% of the total runoff volume, but
instead, it met 91% of the irrigation demand of the property. This study
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illustrates that stormwater runoff reduction goals can sometimes be at odds
with water quality goals.

Fresno, California has successfully used decentralized infiltration basins
to recharge groundwater since the 1970s. The city’s recharge management
includes more than 100 stormwater recharge basins infiltrating imported sur-
face water from the Sierra Nevada Mountains as well as stormwater runoff
from the city’s industrial, residential, and commercial areas.56 One of the
recharge systems named Leaky Acres has been used to recharge water
from the nearby Kings River since 1970. Over its first 10 years of use, Leaky
Acres achieved recharge rates of 12.1 cm/day and an average efficiency of
0.86, defined as the ratio of number of days of water availability to number
of days of recharge.76 An extensive study conducted by the USGS in 1986e
87 examined sediment, soil, and groundwater quality impacts from a
recharge basin near Fresno, California, draining an urban industrial site.55

While the study found a wide range of organic and inorganic compounds
from urban runoff, these constituents were primarily trapped in the upper
4 cm of the basin’s sediment. The shallow sediment concentrations of
certain elements were much greater than background concentrations, partic-
ularly for zinc (3800% above background levels), copper (2500%), and lead
(900%).55 Despite the high constituent loadings found in the sediments of
the infiltration basin, the report concluded that there was no impairment
to groundwater quality.

2.2.1 Water Quality Considerations in Decentralized Urban
Managed Aquifer Recharge

Water quality in stormwater runoff is highly variable, although highest
pollutant loads are often observed during the first flush of the wet season,
when pollutants accumulated on impervious surfaces over the dry season
become mobilized in the first storm events of the wet season. This first flush
phenomenon is often observed in urban areas of Mediterranean climates
such as California that have distinctive wet and dry seasons.77 In California,
pollutant loads from the first part of the wet season have been found to be
1.2e2.0 times higher than loads near the end of the season.77 Pollutants in
urban stormwater reflect the variety of land use activities that occur in cities
and include sediments and metals accumulated on roads, construction site
runoff, organics such as animal wastes and decaying vegetation, pesticide
and fertilizer runoff from landscaping, and trash.78 On California highways,
heavy metals such as copper, lead, and zinc have been identified as main pol-
lutants, with average edge-of-pavement concentrations equaling 33.5, 47.8,
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and 187.1 mg/L, respectively.79 Fecal contamination from urban dog and cat
populations is a common problem in stormwater runoff that may even lead
to human health impacts when contact with the polluted water occurs, as is
the case with reuse of captured stormwater for landscaping.80 Levels of fecal
coliform bacteria have been found to exceed California state standards by as
much as 500% in stormwater runoff draining southern California urban
areas.81 Consequently, groundwater contamination is a common concern
when designing recharge projects using urban stormwater runoff.

3. MANAGED AQUIFER RECHARGE IN AGRICULTURAL
SETTINGS

3.1 Background
In semi-arid regions with intensively irrigated agriculture, such as Cal-

ifornia, groundwater overdraft is a pervasive problem that threatens the
long-term sustainability of the agricultural industry. Over the past 100 years
a combination of factors including changing climate, changing land use
(from annual to more water-intensive perennial tree and vine crops), wide-
spread adoption of high-efficiency irrigation systems (e.g., sprinkler and drip
systems), and the conversion of rangeland into cropland have led to
increasing demand in surface and groundwater resources and groundwater
depletion in the Central Valley of California since the 1960s.13,54,82,83

Bringing groundwater basins back into sustainability necessitates capitalizing
on excess surface water during wet years to actively recharge groundwater.
ag-MAR is a water management approach whereby excess surface water is
diverted onto agricultural fields to recharge the underlying aquifer for later
use during times of drought. California has over 7 million ha of agricultural
land with an extensive water conveyance delivery system that could be used
to transfer excess water to farm fields.11,84,85 While dedicated infiltration ba-
sins or injection wells to capture excess surface water are expensive to build,
leveraging agricultural lands for on-farm recharge presents an opportunity
for MAR at minimal cost.84,86 However, feasibility of ag-MAR depends
on many interrelated and site-specific factors such as water availability for
recharge, infrastructure to convey surface or source waters to fields, associ-
ated economic costs, water laws and permits, the physical and biochemical
properties of the soil, the crop’s tolerance to water inundation, the capacity
of the aquifer to store and recover the recharged water, and the effect of the
practice on groundwater quality (Figs. 7 and 8).
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3.2 Feasibility
3.2.1 Water Availability
Although the Sustainable Groundwater Management Act (SGMA) passed
in 2014 by the California legislature aims to bring critically overdrafted
groundwater basins back into balance (i.e., sustainable yield) by 2040,
water managers question “what alternative water resources will be
made available to meet statewide water demand while reducing ground-
water depletion.” Although MAR can be conducted with any available
water (e.g., stormwater, recycled water, desalination, surface water),

Figure 7 Application of stormwater on an almond orchard for groundwater recharge.

Figure 8 Factors influencing the feasibility of ag-MAR implementation.
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most water sources (e.g., recycled water, desalination) do not provide the
water volumes needed to sustain agricultural water demand within the
state.11,87 However, flood flows (i.e., high-magnitude flows [HMFs]) or
flows that occur during large storm events (e.g., atmospheric rivers12)
likely represent the most accessible and largest source of water available
for future expansion of groundwater recharge.10,11,82 HMFs are an
appealing source because agricultural demand for surface water during
the winter months, during which the majority of these events occur, is
relatively low. Research has found that mean HMFs (i.e., flows above
the 90th percentile) may provide an average of 3.2 km3 of surface water
in years when HMFs occur.11 The frequency at which HMFs occur in
different parts of California’s Central Valley includes 7 out of 10 years
in the Sacramento River basin, 4.7 out of 10 years in the San Joaquin
River basin, and 2e3 out of 10 years in the Tulare Lake basin.11 Recent
groundwater overdraft estimates by the California Department of Water
Resources range from 0.6 to 3.5 km3/year, meaning that utilization of
these HMFs could play a significant role in offsetting groundwater over-
draft as a result of extensive MAR projects (Fig. 9).11,54 It is important to
consider the limitations of utilizing surface water resources for ground-
water recharge projects, including postdiversion environmental in-stream
flow regulations and the diversion capacity of infrastructure.88

3.3 Infrastructure
It is important to acknowledge that the existing water conveyance structure
may be unsuitable to transport high-magnitude flood flows to recharge
areas.89 Bachand et al.84 found field preparation to allow for infiltration
on existing farmland to be relatively rapid and inexpensive when compared
with large-scale surface storage or even dedicated infiltration basins; howev-
er, the capacity of existing conveyance equipment (e.g., pipes and pumps)
can limit flood flow applications (Fig. 10). In fact, the California Department
of Water Resources identifies infrastructure transport capacity as a limiting
factor for groundwater banking projects.88 This limiting factor may be over-
come with further implementation of the SGMA, which promotes more
groundwater recharge within the state, and increased availability of public
funds such as the California Water Quality, Supply, and Infrastructure
Improvement Act of 2014, providing about $2.7 billion for the improve-
ment of water storage and infrastructure.11
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3.3.1 Soil Suitability
Although agricultural fields present a promising opportunity for MAR, the
suitability of each site must be evaluated on a number of factors. Recent soil
suitability research for agricultural groundwater banking used national soil
survey data and identified five factors that are critical to successful on-farm
recharge when selecting locations for ag-MAR across agricultural land in
California.89 The Soil Agricultural Groundwater Banking Index (SAGBI)
considers deep percolation, root zone residence time, topography, chemical
limitations, and soil surface condition.

The deep percolation factor captures the ability of a site to transmit water
through the soil profile (top 1.5 m) and is determined by the soil horizon
with the lowest saturated hydraulic conductivity (Ksat). This factor becomes
important when utilizing large amounts of water such as flood flows for ag-
MAR, which are only available for sporadic but short periods of time during

Figure 9 Average volume estimates of high-magnitude flow (HMF) occurrence (flow
>90th percentile) between November and April over the full period of record for 93
stream gauges located within the Central Valley watershed. A and B denote the loca-
tions of the two outlet gauges. MCM and CKM stand for million m3 and km3,
respectively.
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winter storm and spring snowmelt events.89 Root zone residence time is a
measure of the duration of saturated or near-saturated conditions in the
soil profile and derived from the harmonic mean of Ksat of all horizons in
the soil profile, soil drainage class, and shrink-swell properties. Near-
saturated conditions have the potential to negatively impact the root health
of crops, reduce yields, or cause undesirable anoxic conditions in the root
zone. Both the deep percolation factor and the root zone residence time
are often controlled by the presence of less permeable clay layers. A
confining or semiconfining clay layer with low hydraulic conductivity can
impede the percolation of water toward the groundwater table. Deep
percolation is a consideration of how much water will actually reach the
groundwater table, while root zone residence time considers how crop
health will be affected by prolonged ponding conditions associated with
flooding events.

SAGBI’s chemical limitation factor considers the salinity and leaching poten-
tial of a site’s soil. In California, salts from the marine sediments along the
coastal range, as well as irrigation management practices, have led to the
accumulation of salts in the soil, which may pose a contamination threat
to groundwater resources. Further research is ongoing concerning other

Figure 10 Cost comparison of water projects in California.90
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chemical contamination factors in agricultural fields, including nitrate and
pesticide transport processes. The last factors considered are the topography
(slope of the field site) and the soil’s susceptibility to physical change, such as
erosion or compaction.89 SAGBI weighs the five factors according to their
relative importance for ag-MAR, with deep percolation and root zone resi-
dence time ranked as the most important ones. In many parts of the Central
Valley of California, low permeability layers (often clay-rich or consisting of
precipitated carbonates) lie below the root zone, impeding deep percolation
and root zone residence time. Some of these restricting features can be
temporarily alleviated by deep tillage practices, using machinery that plough
the soil to a depth of 0.5e0.6 m, prior to planting. Deep tillage can result in
significant increases in the amount of land suitable for ag-MAR.89 In
California, about 2.03 million ha of agricultural land, mainly found on the
alluvial fans on the east side of the Central Valley (Fig. 11), were rated as
excellent, good, and moderately good for groundwater banking, or 28%
of the agricultural land throughout the state. However, when considering
land that has been deep tilled, the area suitable for groundwater banking
increased to 2.25 million ha, or 31% of the total agricultural land area,
and could potentially be used to bank up to 1.5 km3 of water per day on
grape, alfalfa, or fallowed land.89 This preliminary estimate assumes that
the infrastructure to deliver water to all available agricultural land is in place,
and that 0.3 m per day of water is available and infiltrated. However, field
trials assessing the infiltration rates of varying soils are needed.

3.3.2 Crop Tolerance
A concern for implementing ag-MAR on a large scale is the potential
adverse effect that ag-MAR could have on crop health and yields, which
is largely dependent on the crop’s ability to tolerate flooding or saturated
conditions in the root zone, and the local soil properties. The effects of
prolonged flooding on root health, specifically anoxic conditions in the
root zone, must be evaluated. A decrease in root health may result in lower
nutrient uptake, impacting annual average yields. Recently, repeated
experimental flooding events for groundwater recharge on test plots of al-
falfa have shown minimal yield loss when water was applied during the
winter months (e.g., crop dormancy) on highly permeable soils.85

Although reduced oxygen conditions were observed in the root zone
during flooding events, soils return to preflooding conditions within
several days after water applications for recharge ceased.85 Other research
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studies have corroborated the results, finding no significant yield decreases
in pistachio or alfalfa orchards, and no observable root damage to pistachio
trees or wine grapes.84 To avoid injury of perennial crops on less suitable
soils (e.g., soils with a SAGBI rating of moderately good or less), cropland
could be flooded when it is fallow, reducing the risk of root damage
or yield decrease. So far, ag-MAR has not had any significant negative ef-
fects on root health of almonds or crop yields of alfalfa in soils with high
percolation rates.85 In order to ensure this, it may be advisable to imple-
ment ag-MAR on fields with relatively low root zone residence times
(i.e., prioritize highly rated soils from the SAGBI index).

Figure 11 Soil Agricultural Groundwater Banking Index (SAGBI). Ratings of California
soils based on their suitability for ag-MAR. Fig. 5 from the study by O’Geen A, Saal M,
Dahlke H, Doll D, Elkins R, Fulton A, Fogg G, Harter T, Hopmans J, Ingels C, et al. Soil
suitability index identifies potential areas for groundwater banking on agricultural lands.
Calif Agric 2015; 69(2):75e84.
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3.3.3 Cost
During times of drought, when surface water allocations are reduced,
farmers turn to a combination of groundwater and land fallowing to meet
irrigation needs. However, long-term groundwater depletion threatens
the groundwater’s capacity to serve as a buffer during times of drought. Dur-
ing the 2012e16 drought, even with a fivefold increase in groundwater
pumping, an estimated 228,242 ha were fallowed in California, with farm
revenue losses of $1.8 billion.8,91,92 Costs of groundwater pumping are
increasing as water tables are falling, as indicated by an average increase of
39% in groundwater pumping costs during the 2012e16 drought.91e94 As
farmers in California shift toward high-value, perennial cropping systems,
which harden water demand, groundwater reserves will become increas-
ingly important during times of decreased surface water availability because
these systems cannot be temporarily idled. Thus economic incentives for
farmer participation in ag-MAR are needed.

In comparison to other water storage and supply strategies such as
seawater desalination or surface water storage, ag-MAR has emerged as a
more economical method. Costs for ag-MAR are estimated to be about
$0.03 per m3 compared with $1.54 to $2.43 per m3 for seawater desalina-
tion, $1.38 to $2.27 per m3 for large-scale surface water storage, and $0.07
to $0.89 per m3 for dedicated recharge basins (Fig. 10).17,84,95 Costs associ-
ated with ag-MAR include labor, land preparation, fuel, and farm-scale
infrastructure improvements.86 Furthermore, if excess surface water is used
for in-lieu recharge (using surplus surface water to irrigate rather than
groundwater), the costs of pumping groundwater for irrigation can be
avoided or partially offset depending on how much of the crop’s demand
is met with in-lieu recharge. Finally, if flood flows are diverted, costs asso-
ciated with downstream flood damage can also be mitigated. Since 1983,
there have been 3 years (1983, 1995, and 1997) where flood damage has
occurred along the Kings and San Joaquin Rivers causing $1.2 billion in
damage.96 Bachand et al.96 estimated that if approximately 14 m3/s of water
had been diverted from the Kings River during those 3 years and applied to
the entire study area (404 ha), a total of 1.23 km3 would have been diverted,
and the entire costs from flood damage could have been avoided.

3.3.4 Impact on Water Quality
Despite the increased interest in ag-MAR in California, the potential for
groundwater contamination with nitrate, salts, and pesticides as a result of
agricultural flooding must be assessed before widespread implementation
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occurs. Nitrate levels in public supply wells in California are already
increasing at an average rate of 2.5 mg/L per decade in large portions of
the Central Valley, and many wells exceed the maximum contaminant level
(45 mg/L) set by the California Department of Public Health.97 Agricultural
groundwater banking has the potential to flush contaminants, including
nitrate, out of the root zone toward the groundwater table. The time it
takes for nitrate to be transported from the land surface to the groundwater
table can range anywhere from a subannual to decadal scale, depending on
factors such as depth to groundwater, hydraulic conductivity of the soils and
sediments of the underlying vadose zone, and the hydrologic regime (e.g.,
annual precipitation, irrigation efficiency) of the region.98e100 Build-up of
nitrate in the soil and unsaturated zone above the groundwater table occurs
under agricultural lands as a result of overfertilization and inefficient irriga-
tion practices. The use of NPK (nitrogen, phosphorus, potassium) fertilizer
in California’s agricultural production systems is ubiquitous and may
continue to increase in the future as population growth demand greater
food and agricultural production. However, research shows that crops
only use up to w50% of the applied nitrogen fertilizer.101 This low nitrogen
use efficiency leaves nitrate in the root zone, where it can undergo denitri-
fication processes and degas into the atmosphere as nitrous oxide (N2O), ni-
trogen gas (N2), or nitric oxide (NO), or leach under inefficient irrigation
practices deeper into the vadose zone, toward the groundwater table
(Fig. 12).102

Nitrate transport and nitrate contamination of groundwater have been
an important research topic in recent years, as the effects of long-term
agricultural production on groundwater resources are beginning to be
realized.98,100,103 Studies in the Central Valley of California have looked
into the effects of nitrate leaching from almond orchards as a function of
fertilization and irrigation timing and practices.100 The authors found that
nitrate leaching was minimized when fertilizer applications occurred at
the end of irrigation events, and maximized when flooding events occurred
prebloom or postharvest.100

In California, irrigated agriculture is identified as the greatest source of
nitrate contamination of groundwater in the southern parts of the Central
Valley.104 For example, research using a modified version of the University
of California’s Groundwater Pollution Hazard Index has been developed
using characteristic soil parameters, types of irrigation systems in place
(e.g., sprinkler or drip), and nitrogen use efficiencies for different crops to
identify high-risk areas for nitrate leaching due to agricultural practices.105
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ag-MAR uses amounts of water orders of magnitude greater than typical
sprinkler or drip irrigation systems, potentially decreasing the transit time
of nitrate transport through the vadose zone and allowing mobilization of
nitrate previously bypassed by preferential flow.98 Although implementing
ag-MAR will likely result in an initial downward pulse of nitrate from
the root zone, it is proposed that subsequent flooding events on a dedicated

Figure 12 Modeled Nitrate Concentrations for Central Valley of California (EPA Water
Standard for NO3eN is 10 mg/L). Dark green shading indicates the central basin, while
light green shading indicates the western and eastern alluvial fans. Fig. 1 from the study
by Ransom KM, Nolan BT, Traum JA, Faunt CC, Bell AM, Gronberg JAM, Wheeler DC,
Rosecrans CZ, Jurgens B, Schwarz GE, et al. A hybrid machine learning model to predict and
visualize nitrate concentration throughout the central valley aquifer, California, USA. Sci
Total Environ 2017; 601:1160e1172.
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field site may result in a dilution effect.96 This is where the initial nitrate
pulse is offset by higher quality water traveling down the same pathways
to recharge groundwater. The amount required for this effect to occur
will depend on the amount of nitrate present in the unsaturated zone and
porous media characteristics such as hydraulic conductivity, porosity, and
the degree to which preferential flow occurs during flooding events.

3.3.5 Agricultural Managed Aquifer Recharge Modeling
To the best of our knowledge, few studies have been conducted in relation
to modeling ag-MAR. However, Niswonger et al.106 conducted a
comprehensive modeling study to evaluate and constrain the regional
and long-term benefits or consequences of ag-MAR for both groundwater
and surface water sustainability. The study coupled MODSIM, a linked-
network optimization and operations/planning model that determines
surface water diversions and reservoir releases within the constraints of
the overarching water laws, operations, and demands, with MOD-
FLOW-NWT, a distributed hydrologic model that simulates groundwater
flow, surface wateregroundwater interactions, and unsaturated flow. The
modeling study focused on the Carson Valley of California and Nevada, a
semiarid agricultural basin, with a two-tiered water priority rights system
that includes a minimum in-stream requirement, and three varying aquifer
hydraulic conductivity values (Kh) of Kh ¼ 2, 4, and 8 m/day.106 A more
generalized physiography of the valley was employed to create a simplified
model that can be applied to other semiarid settings. Over a 24-year period,
between 1990 and 2014, 7 years had enough excess surface water to
implement ag-MAR. Modeling results show an increase in total annual
volumetric recharge of 0.23 km3 (12%), 0.18 km3 (10%), and 0.17 km3

(9%) for the Kh values of 2, 4, and 8 m/day, respectively. Furthermore,
groundwater levels increased on average by as much as 7 m with increases
in storage being the greatest in areas where groundwater pumping was
most severe. Consecutive years of ag-MAR provided the greatest increases
in groundwater storage, with levels 1.5e2.5 m higher for 6 years after
recharge water application compared with modeled scenarios without
ag-MAR. A single year of ag-MAR provided 3 years of sustained elevated
groundwater levels of 2.5 m across Kh values, even during subsequent
drought years. Lower Kh values had more significant sustained ground-
water storage increases compared with higher Kh values due to lower
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groundwater discharge rates; however, lower conductivity aquifers were
more negatively impacted by groundwater overdraft in times of drought
due to the increased storage capacity.

Water flow and transport of constituents are highly influenced by the
hydrogeology of the vadose zone;98 thus modeling exercises are limited
by the knowledge and characterization of the underlying stratigraphy. To
date, point measurements have been used to describe the vadose zone,
with limited ability to capture the variability. New methods for describing
the vadose zone include remote sensing methods such as Interferometric
Synthetic Aperture Radar (InSAR)107 and geophysical imaging techniques
such as Electric Resistivity Tomography.108,109 These nonintrusive
methods are able to characterize, with a considerable amount of detail,
the textural variability in the subsurface across large scales. These advances
in characterizing the vadose zone will further our understanding of water
flow and constituent transport to the underlying aquifers under normal irri-
gation practices and ag-Mar.

3.3.6 Agricultural Managed Aquifer Recharge Case Study
A case study in the King’s River Basin examined the infiltration rates of
floodwater diverted from the river onto an adjacent 405 ha ag-MAR test
field to estimate the amount of land needed to capture the available
flood flows.84,86 Like much of California’s Central Valley, the Kings River
Basin is characterized by an annual overdraft of 0.20 km3 and groundwater
levels 60 m below the land surface. Flood flows from the King’s River
ranged from 14 to 160 m3/s over the studied 42-year period and exceeded
the flood capacity of the Kings River channel on a 7-year recurrence in-
terval. Bachand et al.84,86 conducted ag-MAR on three cropping systems
(grapes, alfalfa, and pistachio) and fallow land (prior to spring row crop
planting) on soils that ranged from sandy loams to loamy sands of which
most were considered to have limited infiltration rates. Flows diverted in
this study ranged from 0.06 to 0.6 m3/s, with 3.8 � 106 m3 of water
diverted. Infiltration rates ranged from 6.8 cm/day on sandy loams to
40 cm/day on loamy, coarse sands, with a mean of 10.7 cm/day. Total
water applied in this case study ranged from 0.5 to 3 m reaching depths
of 3e36 m, with higher volumes positively correlating to the number of
days flooded. The study found that 1.6e4 ha is needed to capture
0.03 m3/s of diverted water.84 Although soil surveys indicated these sites
to be of lower infiltration potential, soil preparation including deep tillage
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of the underlying confining layer allowed for higher infiltration rates.
Thus, while soil survey is helpful in the initial targeting of potential sites
for recharge, site-specific anomalies and soil management practices should
be taken into consideration.

3.3.7 Inefficient Irrigation and Canal Seepage
Pumping groundwater for irrigation represents a major discharge compo-
nent of the water budget of an aquifer. However, inefficiencies in irrigation
lead to losses of water below the root zone which, in turn, contribute to
groundwater recharge.110 In arid agricultural regions, percolation of
excess irrigation water (water applied in excess of crop demand) can
contribute more to the recharge of underlying aquifers than, for example,
mountain-block recharge, with one study finding 0.04e0.08 km3/year
of groundwater recharge from excess irrigation water and only
0.002 km3/year of recharge from mountain-block recharge.111 Regional
irrigation efficiencies averaged over a 22-year period (1984e2009), are
70% of crop demand with 30% recharging underlying aquifers, which is
similar to the irrigation efficiency range of 40%e80% given for gravity
fed systems in the Encyclopedia of Water Science.10,112,113 Since 2000,
many California farmers have switched from flood irrigation systems to
high-efficiency irrigation technologies (e.g., pressurized microsprinkler
and drip systems), which generally have efficiencies ranging from 70% to
95%.112 While the high-efficiency irrigation practices seem to have a pos-
itive effect on surface water reservoirs (of up to 4.5 m in lake stage gains),
evidence is mounting that high-efficiency systems can reduce the amount
of excess water leached below the root system and therefore decrease
groundwater recharge.110,114e116

In the Central Valley of California, 50% of crops are now irrigated
with microirrigation systems as opposed to flood irrigated systems.117 It is
believed that increased irrigation efficiency (the ratio of water used by plant
evapotranspiration to water diverted from the river or canal system) leads to
water savings. However, an increase in irrigation efficiency has been
shown to increase total water use by allowing for more intensive use of
the irrigation water (increasing yields per hectare as well as water use per
hectare) and expansion of irrigated farmland.116e118 In a case study in the
arid Southwest, Ward and Velazquez116 found that by increasing drip irriga-
tion subsidies from 0% to 100% of the capital, total water applied to agricul-
tural fields decreased by 0.05 km3 and groundwater pumping decreased by
0.04 km3; however, groundwater recharge was reduced by 0.03 km3, and
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total water use increased by 0.04 km3. This result is attributed to drip irriga-
tion causing higher total crop evapotranspiration and higher crop yields and
less excess irrigation water leaching below the root zone to groundwater.
Furthermore, water savings can be used to expand irrigation area of a
farm operation or applied to more water-intensive crops, and therefore
less of the water contributes to groundwater recharge.117 The switch to
high-efficiency irrigation systems also has the undesirable result that more
farmers use only groundwater for drip/micro-irrigation (because of the bet-
ter water quality) even at times when surface irrigation water is available,114

leading to increased groundwater use and depletion. Based on a survey of 21
water districts in California, Burt and Monte119 found that the main factor
for the use of groundwater for drip/micro-irrigation was the lack of flexible
water delivery service to fields.

Other sources of groundwater recharge in agricultural areas include leaky
surface water conveyance systems (e.g., unlined canals, ditches, leaky pipe-
lines). Carrol et al.111 found that surface water delivery canals can lose on
average 20% of the diversion water to groundwater via leakage, and that
in wet years, groundwater recharge from canal leakage can account for
33% of groundwater inflows. This study estimated 0.03e0.05 km3/year of
groundwater recharge via canal leakage. In some areas of California, water
managers intentionally release surface water from reservoirs into canals to
recharge groundwater.120 However, canals that are constructed over highly
permeable soils are usually lined with concrete to reduce seepage and in-
crease lateral surface water conveyance and therefore are not sources of
groundwater recharge.120

4. MANAGED AQUIFER RECHARGE IN COASTAL
AREAS

4.1 Overview
MAR in California’s coastal regions differs from agricultural and urban

MAR, in that it has the primary goal of preventing seawater intrusion while
also enhancing groundwater storage, improving water quality, preventing
subsidence, or protecting groundwater-dependent ecosystems (GDE).
Seawater intrusion was recognized in the early 1900s in the Mission Valley
of San Diego (1906), the West Basin of Los Angeles County (1912), Orange
County (1925), the Pajaro Valley of Santa Cruz and Monterey Counties
(early 1940s), and Ventura County (1951)121 (Fig. 13). Efforts to locally
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or regionally raise groundwater levels and slow or halt seawater intrusion
have relied principally on injection wells (also called barrier wells)122e125

and infiltration basins15,126e131 (Fig. 13).

4.2 Injection Wells
Injection wells are used to place fluids underground into porous geologic
formations.132 In the context of MAR, they recharge water directly into
an aquifer through abandoned wells121 or wells constructed specifically for
that purpose.122e124 Seawater intrusion was a significant problem in nine
California groundwater basins by 1958, with Los Angeles County’s West
Coast Basin and the Coastal Plain of the Orange County Groundwater Basin
being the most severely affected.121 Hence, these areas were some of the first
basins to utilize injection wells in California.124 Test injections of freshwater

Figure 13 Seawater intrusion and basin prioritization of groundwater basins in Califor-
nia. Basins with high or medium priority account for approximately 96% of ground-
water use in California and 88% of the state’s population.
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in an abandoned well were conducted at Manhattan Beach, Los Angeles
County in 1950,121 a test barrier was completed in 1953, and the West Coast
Basin Seawater Barrier and the Dominguez Gap Barrier were completed in
1969 and 1971, respectively.124 The mean annual recharge from the Los
Angeles County injection wells is 0.04 km3/year (35,000 acre-feet/year),
and particle tracking analysis using the USGS MODFLOW model has
shown that most of the injected water moves inland at a speed of about
800 m per decade.123 Furthermore, the model shows that while seawater
intrusion has been halted along the majority of the coastline, it continues
in some areas despite the injection well barriers, especially near the Domi-
nguez Gap Barrier in Long Beach, California.123 It has been suggested
that in-lieu delivery of surface water to reduce groundwater pumping would
be more cost-effective than injection of surface water in this area, as injected
water is more than three times the price of in-lieu surface water, largely due
to pumping costs and the requirement that the water supply for injection
wells be uninterrupted.123 Source water for these projects shifted from Col-
orado River water and water from the California State Water Project to
blending of these sources with recycled water beginning in 1995.122,124

Source water is a particularly important consideration for injection wells,
as unlike some other types of MAR (e.g., infiltration basins, bank infiltra-
tion), there is little natural filtration to remove sediment or contaminants.
Source water is typically treated to drinking water quality standards (i.e., ter-
tiary treatment) prior to injection, regardless of whether surface water or
recycled water is used133; however, for recycled water, advanced treatment
(beyond tertiary treatment) is required, involving reverse osmosis and oxida-
tion processes.134 The West Coast Basin Seawater Barrier, Dominguez Gap
Barrier, and Alamitos Gap Barrier (a joint project between Los Angeles
County and Orange County) all use source water that has received advanced
treatment122 (Fig. 14). While this water treatment largely eliminates the po-
tential for biological and chemical contamination of drinking water, it may
be insufficient to maintain the performance of injection wells due to
clogging resulting from chemical precipitation caused by geochemical in-
compatibility of the source water and the groundwater.133 Pumping water
from an injection well daily for short periods of time can be an effective
strategy to mitigate clogging issues.133

Injection wells have a major advantage over other forms of MAR, in that
they offer more flexibility in determining appropriate locations (since they
have a very small footprint compared with infiltration basins); this allows in-
jection wells to be sited where they will create the most effective barrier

Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management 249



against seawater intrusion. The exception to this flexibility is the California
Department of Public Health requirements that mandate injection wells
using recycled water be situated far enough from production wells to
provide a minimum 2-month residence time.135 In addition to the injection
well projects described previously, OCWD also maintains the Talbert
Seawater Intrusion Barrier using 100% recycled water from the GWR Sys-
tem, an advanced water purification facility designed to produce about
3800 m3/day.125,136 According to the US EPA, there were already 308
documented seawater intrusion barrier injection wells in California by
1999, and the number has continued to grow since.132 The projects dis-
cussed previously utilize at least 327 injection wells combined.124,125

4.3 Infiltration Basins
Although injection wells have proven successful in managing seawater intru-
sion, traditional infiltration or surface water spreading basins were likely the
first form of MAR practiced in California. Infiltration basins are still an
important tool to raise groundwater levels and combat seawater intrusion.

Figure 14 Location of injection well barriers (black dotted lines) for seawater intrusion
control in Los Angeles County.
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Infiltration basins have been used since 1917 to recharge groundwater in Los
Angeles County, though the injection wells mentioned previously have
become the principal defense against seawater intrusion since their installa-
tion in the 1960s and 1970s.137 However, other areas experiencing seawater
intrusion, like the Oxnard Plain in Ventura County and the Pajaro Valley in
Santa Cruz County (Fig. 15), do not have injection well barriers and rely on
infiltration basins to raise groundwater levels and reduce or eliminate
seawater intrusion.15,126e130,138

Infiltration basins differ significantly from injection wells in the factors
that must be considered to ensure maximum benefits. Site selection must
consider the soil infiltration capacity, slope, connection to the underlying
aquifer, land use, vadose zone thickness, and aquifer storage, not to mention
the potential for conveyance of source water and myriad legal and political
issues.15 Site selection has been greatly aided by GIS tools, such as those used
to identify suitable sites for infiltration basins in Santa Cruz County,15 which
parallel similar efforts in the agricultural sector discussed earlier in this

Figure 15 Seawater intrusion within the Pajaro Valley, California. Fig. ES-2 from Basin
management plan update, Tech. rep. Pajaro Valley Water Management Agency; 2014.
https://www.pvwater.org/images/about-pvwma/assets/bmp_update_eir_final_2014/BMP_
Update_Final_February_2014_(screen).pdf).
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chapter. The appropriate scale for an infiltration basin depends on the source
water availability, the extent of the project goals, and the financial resources
available to a project. The scale of projects and size of infiltration basins vary
widely: for example, infiltration basins supplied by distributed stormwater
collection (DSC) may range in size between 0.4 and 4 ha with a catchment
area between 40 and 400 ha.130 In contrast, centralized infiltration basins
supplied by developed surface water may be much larger, like the El Rio
spreading grounds in Ventura County, which covers approximately
40 ha.126 A DSC-supplied 1.7-ha infiltration basin in Santa Cruz County
infiltrated 8.8 � 104 m3/year on average over 6 years (Fig. 16), while the
centralized 40-ha El Rio spreading grounds infiltrated an average of
4.0 � 107 m3/year during the 1990s.126,130

Source water for infiltration basins varies from developed surface water
to recycled water to DSC, with the appropriate water source depending
on its availability and the scale desired for the project. Source water quality
considerations for infiltration basins differ from those for injection wells

Figure 16 Runoff collected in an MAR project supplied by distributed stormwater
collection in Santa Cruz County. From Figure 3 from Beganskas S, Fisher AT. Coupling
distributed stormwater collection and managed aquifer recharge: field application and
implications. J Environ Manag 2017; 200:366e379.
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because passage through the vadose zone will allow physical filtration or
transformation of some contaminants and alter the geochemical composition
of the water; nonetheless, clogging can still be a major issue.133 Infiltration
basins are scraped routinely to remove accumulated sediments and restore
high infiltration rates, but infiltration rates can decline more than an order
of magnitude even during a single (albeit season-long) infiltration event.129

Sediment detention basins can allow settling time for surface water sources
with high sediment loads. Nevertheless, an infiltration basin supplied by
DSC in Santa Cruz County accumulated up to 8 cm of sediment per season,
despite the use of a sediment detention basin, resulting in a significant
decrease in the effective hydraulic conductivity.130 A study conducted in
Orange County showed that bank infiltration, a MAR technique not
commonly used in California, can effectively reduce suspended solids in
river water prior to its use in infiltration basins, thus maintaining high perco-
lation rates.131 More research is needed on corresponding methods to reduce
suspended solids in source water from DSC. Although the sediment load of
source water is one of the primary water quality concerns given its impact on
infiltration basin performance and maintenance costs, biological and
chemical water quality also need to be considered. For projects using
recycled water, the mandated residence time in the aquifer has been reduced
from 12 months for injection wells and 6 months for infiltration basins to
2 months for both surface and subsurface applications of recycled wa-
ter.122,135,139 The transport time of introduced gas tracers has been shown
to be a reliable indicator of aquifer residence time and is one potential
method to document that required residence times are met in coastal
California infiltration basins.126,140 Whereas direct injection into the aquifer
requires advanced treatment of recycled water (reverse osmosis and oxida-
tion), specific treatment processes are not prescribed for the use of recycled
water in infiltration basins, provided that the required reductions in patho-
genic microorganisms and other water quality requirements are met.134,141

Infiltration basins using developed surface water or DSC don’t have these
same regulatory requirements, but like in ag-MAR, nitrate leaching can still
be an important consideration.127,128 Whereas residual nitrate in the soil may
be the dominant nitrate source in ag-MAR, nitrogen-rich source water
can be an important nitrate source for infiltration basins.127 It has been shown
that 30%e60% of the original nitrate load may be removed from source wa-
ter during infiltration, predominantly by denitrification processes.127,128

Schmidt et al.127,128 further showed that denitrification may be enhanced
with the addition of labile carbon sources that increase the organic carbon
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concentrations in the infiltrating soil layer.127,128 It has also been suggested
that the reduction of nitrate loads by denitrification is reduced at high
infiltration rates, and that an optimal infiltration rate may be identified by
taking into account both water quality and quantity goals.127 In addition
to the challenges of site selection, sediment accumulation, and potential ni-
trate leaching, the cost of infiltration basins is an important consideration.
Proponents of DSC-MAR argue that it can represent a more cost-effective
option compared with large-scale centralized infiltration basins, especially
since it takes advantage of natural precipitation rather than developed water
sources.130 However, unlike centralized infiltration basins, DSC-MAR
likely requires the cooperation of private landowners and a mechanism for
incentivizing landowner cooperation. To this end, the Pajaro Valley Water
Management Agency has recently launched a Recharge Net Metering
program in which recharge from infiltration basins on a landowner’s prop-
erty generates a rebate for groundwater pumping fees.142

5. DISCUSSION AND CONCLUSIONS

5.1 Undesirable Results and Environmental Benefits of
Managed Aquifer Recharge

California’s SGMA requires Groundwater Sustainability Agencies
(GSAs) to assess the sustainability of their basin using six critical parameters
or sustainability indicators. The six indicators include (1) lowering of
groundwater levels, (2) reduction of groundwater storage, (3) seawater
intrusion, (4) groundwater quality degradation, (5) land subsidence, and
(6) depletion of interconnected surface water. Every GSA must assess the
current condition of their basin using these six parameters and then establish
minimum thresholds and measurable objectives for each one. MAR can be
used to address one or many of these undesirable results of groundwater
overdraft.

Ag-MAR can be implemented to increase groundwater elevation and
storage, improve groundwater quality, mitigate land subsidence, and reduce
surface water depletion of interconnected groundwater and surface water
systems.11,84,106 Capturing flood flows for ag-MAR can increase ground-
water elevation in a fully allocated river basin without negatively impacting
other water users or minimum in-stream flow requirements, although
consideration of the timing of diversion of the flood flows is needed.11,106

HMFs are important for the geomorphology and ecology of a river,
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including transportation of sediment, channel formation, dispersal of native
riparian organisms, and creation of spawning grounds for fish.143e145 Kocis
and Dahlke11 suggest that HMF events after dry periods could be reserved
for channel formation or environmental flows since the majority of sediment
is usually transported early in the wet season, and HMFs later in the season
could be diverted for ag-MAR so as not to negatively affect riverine ecosys-
tems. The historical hydrologic condition of the SacramentoeSan Joaquin
River Delta, which provides water to the Central Valley of California, has
been in excess of surface water allocations for urban, agricultural, and envi-
ronmental needs 41% of the days since 1976, suggesting the joint utilization
of HMFs for groundwater banking and environmental flows is possible.11

This mutually beneficial situation would allow basin managers to address
SGMA sustainability indicators using MAR, while preserving ecosystem
functioning.

Excessive groundwater pumping is the primary cause of subsidence in
California and the San Joaquin Valley (the southern two-thirds of the
Central Valley); it is the single largest human alteration of the earth’s surface,
affecting 13,468 km2.146 Subsidence is an undesirable effect of groundwater
overdraft and causes damage to infrastructure, such as buildings, bridges,
roads, and California’s surface water conveyance systems.147 Subsidence
also increases the risk of flood damage to low-lying areas, permanently
decreases the capacity of fine-grained aquifers to store water, and can
negatively impact sensitive environments such as wetlands and GDEs. The
aquifer system of California’s Central Valley is made up of confined and un-
confined parts. Unconfined coarse-grained sediment aquifers can be easily
extracted from and recharged, experiencing recoverable subsidence from
elastic deformation. However, finer-grained aquitards can experience both
elastic and inelastic deformation. Inelastic subsidence occurs when hydraulic
heads drop below preconsolidation heads, which can occur from excessive
groundwater pumping. Inelastic subsidence is permanent and irreversible,
often caused by the collapse of clay minerals, thus reducing the capacity
of the aquifer to store water for the future. More than 50% of the alluvial
aquifer system in California is made up of fine-grained sediments that are
susceptible to compaction when the preconsolidation stress is
exceeded.148,149 Smith et al.150 used InSAR to find that between 2007
and 2010, during a drought period, groundwater extraction in California’s
San Joaquin Valley resulted in 0.78 m of permanent compaction, and that
98% of all subsidence measured was permanent.150 Groundwater pumping
during this time resulted in historically low groundwater levels, with
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hydraulic head measurements of wells dropping below preconsolidation
heads, causing the inelastic deformation. A more recent study conducted
by the National Air and Space Administration with data from 2006 to
2016 found that several spots within the San Joaquin Valley have experi-
enced continuous subsidence, with rates up to 0.6 m/year.147 The report
found that subsidence in the San Joaquin Valley has affected the California
Aqueduct, the largest water conveyance canal of California’s State Water
Project, reducing its efficiency by 20%.147 Fig. 17 shows subsidence in the
San Joaquin Valley between May 7, 2015, and Sept. 10, 2016, and where
major aqueducts intersect with the subsidence zones.147 There are areas in

Figure 17 Subsidence in the San Joaquin Valley of California between May 7, 2015, and
September 10, 2016. From Fig. 1 from the study by Farr T, Jones C, Liu Z. Progress report:
subsidence in California, March 2015eSeptember 2016; 2017. Original Sentinel-1 data
courtesy of ESA.
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California, however, where improved groundwater management is now
replenishing aquifers and in some cases even causing small amounts of
land uplift. Fig. 18 shows the Santa Clara Valley in California’s southern
San Francisco Bay Area, which has experienced uplift of up to 2.5 cm be-
tween Mar. 2015 and Mar. 2016.147 As discussed in Sections 2 and 3 on
conjunctive use and in-lieu recharge, Santa Clara Valley Water District
has recently implemented a number of heightened groundwater recharge ef-
forts using recycled water and surface water imports, which may contribute
to the region’s slight uplift.

GDEs are ecosystems in which the species’ survival is dependent on
groundwater.152 Unsustainable groundwater pumping can lower ground-
water elevation to the point that surface wateregroundwater interactions
become disconnected, which adversely affects GDEs and can threaten

Figure 18 Subsidence in the Santa Clara Valley of California between Mar. 1, 2015, and
Mar. 7, 2016. from Fig. 21 from the study by Farr T, Jones C, Liu Z. Progress report:
subsidence in California, March 2015eSeptember 2016; 2017 and adapted from the
study by Shirzaei M, B€urgmann R, Fielding EJ. Applicability of sentinel-1 terrain observation
by progressive scans multitemporal interferometry for monitoring slow ground motions in
the san francisco bay area. Geophys Res Lett 2017; 44(6):2733e2742. Original Sentinel-1
data courtesy of ESA.
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species that are endemic to these ecosystems.111,117,153 California’s SGMA is
the only groundwater legislation in the United States that explicitly con-
siders GDEs in its water management plans.152 While ag-MAR, and
MAR in general, can increase baseflow and benefit GDEs, its efficacy de-
pends on the dominating process of groundwater discharge. Niswonger
et al.106 found only a minimal (1%) increase in baseflow to streams after
winter season ag-MAR was implemented.106 After aquifer mounding sub-
sided and groundwater pumping activities were reinitiated, groundwater
discharge to river baseflow was negligible. The authors concluded that the
distribution of groundwater discharge from ag-MAR primarily went to
fulfill the evapotranspiration needs of overlying crops and adjacent phreato-
phyte vegetation, instead of contributing to baseflow.106 They further sug-
gested that if the ag-MAR sites were closer to river channels, the benefits to
baseflow may have been more evident.

Wetlands are a specific category of GDEs with high ecological signifi-
cance in California. Wetlands provide essential ecosystem services such as
naturally improving water quality and buffering floods. In California,
90% of original wetlands have been lost due to land conversion.154 How-
ever, this provides many mitigation opportunities, in which an adverse
environmental impact such as habitat destruction for economic purposes
can be mitigated by creating or improving habitat elsewhere (Fig. 19).
Mitigation may even be achieved with minimal effort; research has found
that wetland reestablishment can occur spontaneously in degraded areas if
lowered groundwater levels are restored to natural levels, and intensive uses
such as agriculture are halted.155 While urban MAR may require a change
in land use, sometimes leading to a loss of habitat, mitigation through
wetland habitat restoration may help to offset the environmental impacts
of MAR.

MAR can cause loss of habitat by converting natural areas into
infiltration basins. However, agricultural and urban MAR should be
considered separately because the impact of MAR depends on its context
and the condition of the land before its conversion to MAR. ag-MAR, for
example, does not necessitate new land conversion and therefore does not
directly cause a loss of habitat (although water being used to recharge aqui-
fers may be diverted from natural ecosystems). Conversely, in the urban
center of Orange County, the construction of a new recharge basin called
Burris Basin required that vegetation and wildlife habitat be removed.26

This loss was mitigated by removing nonnative invasive trees and shrubs
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elsewhere and replacing them with 650 native trees, 2900 shrubs, and 1000
mule fat plants, an important riparian species. The Burris Basin also
required the creation of new habitat for wetland-dependent bird species,
in which storage water from a local dam was used to create new wetland
habitat. A small freshwater wetland was also created on the basin’s edge us-
ing native sedges to improve the basin’s habitat value. In addition to land
use consideration, MAR projects can also mitigate their environmental
impact using alternate water sources, instead of diverting river flows
needed to support river ecosystems. MAR can use recycled water or storm-
water runoff, for example, meaning that less water must be diverted from
natural habitats.

Figure 19 Analysis of managed aquifer recharge (MAR) project benefits with cost infor-
mation. The size of the dot indicates whether the median costs for projects within each
benefit category is below or above the median cost of all the projects (i.e., $0.33 per m3/
year [$410/acre-feet/year]) from Fig. 3 from the study by Perrone D, Merri Rohde M.
Benefits and economic costs of managed aquifer recharge in California. San Franc Estuary
Watershed Sci 2016; 14(2).
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5.2 Potential for Future Expansion of Managed Aquifer
Recharge in California

MAR is well poised to increase in use in California, due to pressing needs for
high-quality water to meet competing agricultural, urban, and environ-
mental demands. MAR infiltration methods offer strong benefits such as
significantly lower capital costs than other storage methods for use in uncon-
fined aquifers and lower land surface requirements for injection-based MAR
types, as evidenced in Tables 3 and 4.156

As demonstrated in this chapter, in the Central Valley of California,
one of the world’s most productive agricultural regions, a history of
groundwater pumping for agriculture has led to critical overdraft and
land subsidence. However, deep water tables and past groundwater deple-
tion leave ample subsurface storage capacity to support future expansion of
MAR, especially in the southern part of the Central Valley.10 MAR

Table 3 Costs of Storage (AUS$ in 2008) and Land Area Requirements of Managed
Aquifer Recharge Projects in Relation to Costs of Alternative Storages in Australia
(From Table 1 From the Study by Dillon et al.29; 1 ML ¼ 103 m3)

Type of Storage

Storage
Size Range
Costed (ML)

Unit Capital Cost of
Storagea ($’000/ML)

Land Surface Area
Required (m2/ML)

Rainwater tank
polyethylene

0.002e0.010 200 500

Concrete tank
trafficable

1e4 1000 200

Precast concrete panel
tank

4e8 250 250

Lined earthen dam
impoundment

4e8 12 600

Large dam gravity or
concrete

350e200,000 4e10 100e200

Pond infiltration/soil
aquifer treatmentb

200e600 1e2 20e60c

Aquifer storage and
recoveryb

75e2000 4e10 1d

aExcluding land cost.
bStorage size used here for MAR is the mean annual recharge volume. Actual storage volume of
recoverable water may be many times this amount; however, in brackish aquifers, recoverable volume
from earlier years will depreciate due to mixing.
cFor hydraulic loading rates of 17e50 m/year.
d1 m2/ML for ASR system, but if detention storage is required to capture stormwater, size may be
20e100 m2/ML depending on runoff from catchment and capture efficiency.
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projects in the Central Valley are indeed increasing in popularity,149 but
expansion of MAR in California must consider source water in the context
of over-allocated surface water and increasing environmental water
demand. As discussed earlier, HMFs that exceed environmental flow re-
quirements can be a promising water source for MAR projects in Califor-
nia’s wet years.11 This possibility, however, may require confronting
political barriers in California, arising from water rights and regulatory re-
strictions that involve a wide variety of stakeholders. Although literature on
HMFs for MAR is primarily from California, the method is also being
considered in New Zealand, on the Te Arai River in the Poverty Bay
area.157 This potential MAR project would use flows from the ecologically
significant Te Arai River for MAR when flows exceed 220 L/s, in a water-
shed dominated by agriculture.

Source water will determine future applications of MAR, especially in
arid regions where conventional water sources such as streamflow and
groundwater are already fully exploited. Looking to the future, additional
water sources may include recycled water, desalinated water, and even oil
processed water. MAR using recycled water is a growing water security
strategy in California and globally. In regions such as California where
wastewater effluent discharge standards require expensive tertiary or
advanced treatment, it becomes increasingly cost-beneficial for municipal-
ities to reuse their effluent rather than discharge it to surface waters.158

However, there are barriers to implementation such as public accep-
tance.159 In an Australian survey, for example, researchers found evidence
of opposition to the use of recycled water for consumption, with 61% of
responders stating that they had health-related concerns about drinking
recycled water.160 Nevertheless, recharge using recycled water is being
practiced and promoted in Australia,161,162 as well as in California, as dis-
cussed earlier in Section 2.

Countries in the arid Middle East and Northern Africa region have
also turned to recycled water for added water security, in some cases using
it for MAR. Israel, a world leader in water reuse, irrigates a large fraction of
its agriculture with recycled water, using a process in which secondary-
treated effluent is recharged to infiltration basins (i.e., soil aquifer treat-
ment), then recovered later in wells for irrigation use.163 In Muscat,
Oman, 94% of municipal water is sourced from desalinated water, and
46% of wastewater is treated and reused for nonpotable purposes such as
landscaping.164 The city is now considering implementing MAR with
recycled water produced in excess during the low-irrigation winter
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months, which would otherwise be discharged to the ocean. An analysis of
the proposed project found it economically appealing to implement
MAR with recycled water, although public acceptance of blending
recycled water with the existing public supply was highlighted as a primary
barrier to implementation.164 Additional concerns arise given the growing
body of knowledge on emerging contaminants, such as pharmaceuticals
and personal care products that have been found to pass through waste-
water treatment processes and may persist in the environment for extended
periods of time.165

In Shanghai, China, MAR has been used for decades for the dual benefits
of preventing land subsidence and providing water cooling for industrial
plants. Urban MAR began in Shanghai in the 1960s to halt land subsidence
when excessive groundwater extraction occurred due to population migra-
tion from rural to urban areas.166 Tap water was injected via, wells and it was
observed that the water maintained cool temperatures for a long period of
time. Subsequently, the cold water was exploited as a cheap option for in-
dustrial cooling, with nearly 500 cold storage wells being deployed in China
by 1984.167 However, these storage wells have not actually resulted in sig-
nificant volumes of aquifer recharge due to well clogging.168 Some parts of
China, however, are now considering implementation of MAR to restore
groundwater supplies. The Northern China Plain region is considered a
global hotspot for groundwater depletion, experiencing high rates of over-
draft and issues such as land subsidence and seawater intrusion.169 Here,
MAR has been proposed as a strategy to reduce groundwater depletion, us-
ing urban recycled water and diversion flows from upstream reservoirs, but
these proposals have not yet been implemented.169

5.3 Barriers and Concerns to Expansion of Managed Aquifer
Recharge

Although there is significant potential for expansion of MAR in California,
several challenges and concerns must be addressed for MAR to be successful.
Source water quality, for example, may impact MAR project performance
in terms of infiltration capacity and groundwater quality.127e131 Sediment
accumulation in infiltration basins can significantly reduce the saturated hy-
draulic conductivity and thus the infiltration capacity of a basin.129,130 In
Southern California, the OCWD controls for sediment accumulation in
its system of over 23 recharge basins by routing recharge water from the
Santa Ana River into a series of desilting ponds.26 The recharge basins still
develop clogging layers of silt over time, so the water district will
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periodically drain and scrape the bottom of the basins with bulldozers.
Fig. 20 shows the accumulated clogging layer from a recharge basin operated
by OCWD. More research is needed to better understand the dynamics of
sediment accumulation and to further investigate methods to reduce the
sediment load of source water, such as bank infiltration or sediment deten-
tion basins.130,131

Nitrate leaching has the potential to negatively affect groundwater qual-
ity, either from nitrate loads in source water or residual nitrate in the soil, and
is a major concern for some infiltration basins and especially for ag-
MAR.84,127,128 Denitrification in the anaerobic zone created by the perched
water table (the saturated soil layer immediately under the infiltration basin)
can significantly reduce nitrate leaching, and more research is needed to
determine how denitrification can be enhanced in infiltration basins.127,128

One potential strategy to promote denitrification that is currently being
investigated is the addition of reactive carbon sources to infiltration ba-
sins.170,171 In coastal areas, there is concern about the effect of sea-level
rise associated with climate change on the continued effectiveness of current
MAR projects. Many modeling and laboratory studies have attempted to
determine how sea-level rise will affect seawater intrusion, although the

Figure 20 Accumulated clogging layer from a recharge basin operated by OCWD. from
Figs. 5e12 O. C. W. District. Orange county water district groundwater management
plan 2015 update, Tech. rep. June 2015. https://www.ocwd.com/what-we-do/groundwater-
management/groundwater-management-plan/.
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results of these studies show significant variability, ranging from no effect on
seawater intrusion to migration of seawater several kilometers further
inland.172 Analytical models generally suggest that the effect of sea-level
rise on seawater intrusion will be small compared with the effects of
continued overdraft of groundwater.3 Werner et al.172 provide a detailed
description of the research on sea-level rise and seawater intrusion.

Lastly, there are several legal and institutional barriers that need to be
overcome in the next few years to ease the process of implementing new
MAR projects (particularly, ag-MAR) statewide. Given that groundwater
recharge is not considered a beneficial use of water in the California Water
Code,173 and landowners or water districts planning on implementing new
MAR programs will likely have to obtain a new surface water right or
change an existing water right, the legal use of excess surface water remains
questionable for the near future. The California State Water Resources
Control Board (SWRCB) currently calculates surface water availability for
a new appropriative surface water right using a method similar to the
Rational Runoff Method,174,175 which estimates the average annual unim-
paired runoff at a diversion point of interest only considering contributing
area, average annual precipitation, and the land use within the watershed.175

This conservative method is used to ensure that there is “unappropriated wa-
ter available to supply the applicant” (California Water Code section
1375(d)) while accounting for “.the amounts of water needed to remain
in the source for protection of beneficial uses.” (California Water Code
section 1243), such as recreation and the preservation of fish and wildlife
habitat.

However, as indicated by Grantham and Viers,176 in many areas of
California, mainly the Central Valley, surface water has been overallocated
to the extent that surface water rights account for nearly 1000% of
natural surface water supplies. This, theoretically, precludes any additional
appropriation of surface water. However, overappropriation is, to a large
extent, an artifact of the water availability analysis conducted by the
SWRCB, which is based on average annual flows and does not take into
account the large variability in streamflow. Hence, new permitting ap-
proaches that would legally permit the use of HMFs for groundwater
recharge are needed.

Allowing a water-right permit for the diversion of high flows could
potentially bridge the gap between policy requirements (such as the need
for a temporary or permanent water right for surface water diversions), legal
requirements (stream reaches that are already legally overappropriated), and
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physical surface water availability for groundwater recharge (in the form of
flood flows during above normal or wet years). Such permits would have to
agree on legally acceptable high-flow thresholds at the point of diversion to
ensure that high-flow diversions for groundwater recharge do not
cause injury to existing water-right holders or environmental flow consid-
erations. However, permits could be restricted to the winter period only
(e.g., keMarch) and define strict instream flow requirements (e.g., the pas-
sage of channel forming flows or fall flushing flows for sediment and nutrient
transport). Solving these regulatory challenges to groundwater recharge will
open new avenues to greater water security in California.

List of Acronyms and Abbreviations
Agag-MAR Agricultural managed aquifer recharge
CA California
CCR California Code of Regulation
CV Central Valley
DSC Distributed stormwater collection
EPA Environmental Protection Agency
GDE Groundwater-dependent ecosystem
GSA Groundwater Sustainability Agency
GWR Groundwater Replenishment
HMF High-magnitude flow
InSAR Interferometric Synthetic Aperture Radar
Ksat Saturated hydraulic conductivity
Kh Hydraulic conductivity
LA Los Angeles
LID Low-impact development
MAR Managed aquifer recharge
NASA National Air and Space Administration
OCWD Orange County Water District
SAGBI Soil Agricultural Groundwater Banking Index
SFPUC San Francisco Public Utilities Commission
SGMA Sustainable Groundwater Management Act
TDS Total dissolved solids

REFERENCES
1. Famiglietti JS. The global groundwater crisis. Nat Clim Change 2014;4(11):945.
2. Siebert S, Burke J, Faures J-M, Frenken K, Hoogeveen J, D€oll P, Portmann FT.

Groundwater use for irrigationea global inventory. Hydrol Earth Syst Sci 2010;
14(10):1863e80.

3. Taylor RG, Scanlon B, D€oll P, Rodell M, Van Beek R, Wada Y, Longuevergne L,
Leblanc M, Famiglietti JS, Edmunds M, et al. Ground water and climate change.
Nat Clim Change 2013;3(4):322.

4. Stefan C, Ansems N. Web-based global inventory of managed aquifer recharge applications. Sus-
tainable Water Resources Management; 2017. p. 1e10.

266 Helen E. Dahlke et al.



5. C. D. of Water Resources. California water plan update 2013 - investing in innovation &
infrastructure. Tech. Rep. Bulletin 160-13. California Department of Water Resources,
State of California Natural Resources Agency; 2014. https://www.water.ca.gov/-/
media/DWR-Website/Web-Pages/Programs/California-Water-Plan/Water-Plan-
Updates/Files/Update-2013/Water-Plan-Update-2013-Volume-1.pdf.

6. U. S. C. Bureau. Quickfacts. 2017. https://www.census.gov/quickfacts/fact/table/US/
PST045217.

7. C. D. of Food, Agriculture. California agricultural statistics review e 2015e2016. Tech.
rep. 2016. https://www.cdfa.ca.gov/statistics/PDFs/2016Report.pdf.

8. Hanak E, Mount J. Putting Californias latest drought in context. ARE Updat 2015;18:
2e5.

9. Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, Argus DF. Grace
groundwater drought index: evaluation of California central valley groundwater
drought. Remote Sensing Environ 2017;198:384e92.

10. B.R. Scanlon, R.C. Reedy, C.C. Faunt, D. Pool, K. Uhlman, Enhancing drought
resilience with conjunctive use and managed aquifer recharge in California and Ari-
zona, 2016 Environ Res Lett 11 (3). doi:10.1088/1748-9326/11/3/035013.

11. Kocis TN, Dahlke HE. Availability of high-magnitude streamflow for groundwater
banking in the central valley, California. Environ Res Lett 2017;12(8):084009.

12. Dettinger M. Climate change, atmospheric rivers, and floods in California - a multimo-
del analysis of storm frequency and magnitude changes. J Am Water Resour Assoc 2011;
47(3):514e23. https://doi.org/10.1111/j.1752-1688.2011.00546.x.

13. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N,
Leetmaa A, Lau N-C, et al. Model projections of an imminent transition to a more
arid climate in southwestern north America. Science 2007;316(5828):1181e4.

14. Berg N, Hall A. Increased interannual precipitation extremes over California under
climate change. J Clim 2015;28(16):6324e34. https://doi.org/10.1175/JCLI-D-14-
00624.1. arXiv:arXiv:1011.1669v3.

15. Russo TA, Fisher AT, Lockwood BS. Assessment of managed aquifer recharge site suit-
ability using a gis and modeling. Groundwater 2015;53(3):389e400.

16. Pierce DW, Das T, Cayan DR, Maurer EP, Miller NL, Bao Y, Kanamitsu M,
Yoshimura K, Snyder MA, Sloan LC, et al. Probabilistic estimates of future changes
in California temperature and precipitation using statistical and dynamical
downscaling. Clim Dynam 2013;40(3e4):839e56.

17. Perrone D, Merri Rohde M. Benefits and economic costs of managed aquifer recharge
in California. San Franc Estuary Watershed Sci 2016;14(2).

18. Gray Davis MJS, Nichols MD. Californias groundwater bulletin. 118, Tech. rep. California
Department of Water Resources; 2003.

19. Gale I, Dillon P. Iah-mar, international association of hydro geologists-managed aquifer recharge,
strategies for managed aquifer recharge (mar) in semi arid areas. 2005.

20. Luxem K. Managed aquifer recharge in California. Tech. rep. American Geosciences insti-
tute; 2017.

21. Lerner DN. Identifying and quantifying urban recharge: a review. Hydrogeol J 2002;
10(1):143e52.

22. Blomquist W, et al. Dividing the waters: governing groundwater in Southern California. ICS
Press Institute for Contemporary Studies; 1992.

23. L. A. D. of Water & Power. Urban water management plan 2015. Tech. rep. June 2016.
www.ladwp.com/uwmp.

24. Roy-Poirier A, Champagne P, Filion Y. Review of bioretention system research and
design: past, present, and future. J Environ Eng 2010;136(9):878e89.

25. Van Wormer SR. A history of flood control in the los angeles county drainage area.
South Calif Q 1991;73(1):55e94.

Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management 267



26. O. C. W. District. Orange county water district groundwater management plan 2015
update. Tech. rep. June 2015. https://www.ocwd.com/what-we-do/groundwater-
management/groundwater-management-plan/.

27. Bouwer H. Design, operation, and maintenance for sustainable underground storage facilities.
AWWA Research Foundation; 2008.

28. Harza MW. Farmington groundwater recharge/seasonal habitat study. Tech. rep. U.S. Army
Corps of Engineers; 2001.

29. Dillon P, Toze S, Page D, Vanderzalm J, Bekele E, Sidhu J, Rinck-Pfeiffer S. Managed
aquifer recharge: rediscovering nature as a leading edge technology. Water Sci Technol
2010;62(10):2338e45. https://doi.org/10.2166/wst.2010.444.

30. Council NR, et al. Ground water recharge using waters of impaired quality. National Acad-
emies Press; 1994.

31. M. Nellor, T. Asano, J. Crook, Groundwater recharge with reclaimed water in Cali-
fornia, Water Environment & Technology WAETEJ, 2 (8).

32. L. A. C. D. of Public Works. Hydrologic report 2015e2016. Tech. Rep. 2015 2016. Los
Angeles County Department of Public Works; August 2017. http://www.ladpw.org/
wrd/report/.

33. Johnson WK. Importance of surface-ground water interaction to corps total water management:
regional and national examples. Tech. rep. Davis Ca: Hydrologic Engineering Center; 1991.

34. O’Leary DR, Izbicki JA, Moran JE, Meeth T, Nakagawa B, Metzger L, Bonds C,
Singleton MJ. Movement of water infiltrated from a recharge basin to wells. Ground-
water 2012;50(2):242e55.

35. Moran JE, Singleton MJ, McNab W, Leif R, Esser BK. California gama program: tracking
water quality changes during groundwater banking at two sites in san joaquin county, vol. 79.
Lawrence Livermore National Laboratory; 2009.

36. S. C. V. W. District. Santa clara valley water district 2012 groundwater management plan.
Tech. rep. Santa Clara Valley Water District; July 2012.

37. Hanson RT. Hydrologic framework of the santa clara valley, California. Geosphere
2015;11(3):606e37.

38. Foster S, van Steenbergen F, Zuleta J, Garduo H. Conjunctive use of groundwater and sur-
face water. no. 57556 in GWMATE Strategic Overview. 2010. http://documents.
worldbank.org/curated/en/874731468315319173/pdf/
575560replacem1onjunctive1Use120100.pdf.

39. S. F. P. U. Commission. 2016 annual groundwater monitoring report westside basin san fran-
cisco and san mateo counties. Tech. rep. San Francisco Public Utilities Commission; 2017.

40. Engineers LSC. Hydrogeologic setting of the westside basin. Tech. Rep. Task 8B Technical
Memorandum No. 1. San Francisco Public Utilities Commission; February 2010.

41. Luhdorff SC. Engineers, Results of in-lieu recharge demonstration fall 2002 through spring
2005: westside basin conjunctive use pilot project. Tech. Rep. File 05-6-063. San Francisco
Public Utilities Commission; October 2005.

42. Department SFP. Deir regional groundwater storage and recovery project. Tech. Rep. Case
No. 2008.1396E. San Francisco Public Utilities Commission; April 2013.

43. Intelligence GW. Municipal water reuse markets 2010. media analytics ltd; 2009.
44. Leenheer JA, Rostad CE, Barber LB, Schroeder RA, Anders R, Davisson ML. Nature

and chlorine reactivity of organic constituents from reclaimed water in groundwater,
Los Angeles County, California. Environ Sci Technol 2001;35(19):3869e76. https://
doi.org/10.1021/es001905f.

45. Sidhu JPS, Toze S, Hodgers L, Barry K, Page D, Li Y, Dillon P. Pathogen decay
during managed aquifer recharge at four sites with different geochemical characteristics
and recharge water sources. J Environ Qual 2015;44(5):1402. https://doi.org/10.2134/
jeq2015.03.0118. https://dl.sciencesocieties.org/publications/jeq/abstracts/44/5/1402.

268 Helen E. Dahlke et al.



46. Betancourt WQ, Kitajima M, Wing AD, Regnery J, Drewes JE, Pepper IL, Gerba CP.
Assessment of virus removal by managed aquifer recharge at three full-scale operations.
J Environ Sci Health - Part A Toxic/Hazard Subst Environ Eng 2014;49(14):1685e92.
https://doi.org/10.1080/10934529.2014.951233.

47. McDermott JA, Avisar D, Johnson TA, Clark JF. Groundwater travel times near
spreading ponds: inferences from geochemical and physical approaches. J Hydrol Eng
2008;13(11):10211028. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1021).

48. State Water Resource Control Board. California drinking water-related laws. https://
www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Lawbook.html.

49. Rock C, McLain JE, Gerrity D. Water recycling faqs (az1568).
50. Herndon R, Markus M. Large-scale aquifer replenishment and seawater intrusion con-

trol using recycled water in southern California. Bol Geol Min 2014;125(2):143e55.
51. Burris D. Groundwater replenishment system 2011 annual report. Tech. rep. Irvine, Califor-

nia: California Regional Water Quality Control Board, Santa Ana Region; June 2012.
52. Asano T, Cotruvo JA. Groundwater recharge with reclaimed municipal wastewater:

health and regulatory considerations. Water Res 2004;38(8):1941e51. https://
doi.org/10.1016/j.watres.2004.01.023.

53. Parker DD. Californias water resources and institutions. In: Decentralization and coordi-
nation of water resource management. Springer; 1997. p. 45e54.

54. California Department of Water Resources. Californias groundwater update 2013. Tech.
Rep. Update 2013. California Department of Water Resources; April 2015.

55. Schroeder RA. Potential for chemical transport beneath a storm-runoff recharge (retention) basin
for an industrial catchment in fresno, California. Tech. Rep. 934140. U.S. Geological Sur-
vey; 1995.

56. Stephens DB, Miller M, Moore SJ, Umstot T, Salvato DJ. Decentralized groundwater
recharge systems using roofwater and stormwater runoff. JAWRA 2012;48(1):134e44.

57. Newcomer ME, Gurdak JJ, Sklar LS, Nanus L. Urban recharge beneath low impact
development and effects of climate variability and change. Water Resour Res 2014;
50(2):1716e34. https://doi.org/10.1002/2013WR014282. http://onlinelibrary.
wiley.com/doi/10.1002/2013WR014282/abstract.

58. Dietz ME. Low impact development practices: a review of current research and recom-
mendations for future directions. Water Air Soil Pollut 2007;186(1e4):351e63.

59. Department of Environmental Resources. Low-impact development: an integrated design
approach. Tech. rep. Maryland: Prince Georges County; January 2000.

60. S. D. C. D. of Public Works. Low impact development handbook: stormwater management
strategies. Tech. rep. San Diego County Department of Public Works; July 2014.
https://www.sandiegocounty.gov/content/sdc/dpw/watersheds/susmp/lid.html.

61. L. A. S. G. R. W. Council. Ground water augmentation model demonstration report. Tech.
rep. The Los Angeles & San Gabriel Rivers Watershed Council; January 2010.

62. Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D. Water quality
improvement through bioretention: lead, copper, and zinc removal. Water Environ
Res 2003;75(1):7382.

63. Dietz ME, Clausen JC. Saturation to improve pollutant retention in a rain garden. En-
viron Sci Technol 2006;40(4):13351340. https://doi.org/10.1021/es051644f.

64. Belden E, Antos M, Morris K, Steele NL. Sustainable infrastructure: the elmer avenue
neighborhood retrofit. Urban Coast 2012;3(1):92100.

65. Dallman S, Spongberg M. Expanding local water supplies: assessing the impacts of
stormwater infiltration on groundwater quality. Prof Geogr 2012;64(2):232e49.

66. Simmons G, Hope V, Lewis G, Whitmore J, Gao W. Contamination of potable roof-
collected rainwater in Auckland, New Zealand. Water Res 2001;35(6):1518e24.
https://doi.org/10.1016/S0043-1354(00)00420-6.

Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management 269



67. Wicke D, Cochrane TA, O’Sullivan AD, Cave S, Derksen M. Effect of age and rainfall
pH on contaminant yields from metal roofs. Water Sci Technol 2014;69(10):2166e73.
https://doi.org/10.2166/wst.2014.124.

68. Edwards EC, Harter T, Fogg GE, Washburn B, Hamad H. Assessing the effectiveness
of drywells as tools for stormwater management and aquifer recharge and their ground-
water contamination potential. J Hydrol 2016;539:539e53. https://doi.org/10.1016/
j.jhydrol.2016.05.059.

69. Jurgens BC, Burow KR, Dalgish BA, Shelton JL. Hydrogeology, water chemistry, and fac-
tors affecting the transport of contaminants in the zone of contribution of a public-supply well in
modesto, eastern san joaquin valley, California. Tech. Rep. 20085156. U.S. Geological Sur-
vey; 2008. https://pubs.usgs.gov/sir/2008/5156/pdf/sir20085156.pdf.

70. Ben-Horin E. Rainwater as a resource: a report on three sites demonstrating sustainable storm-
water management. Tech. rep. TreePeople; 2007.

71. C. of San Francisco. San francisco 2010 stormwater design guidelines. April 2010. http://
www.sfbos.org/ftp/uploadedfiles/bdsupvrs/ordinances10/o0083-10.pdf.

72. C. of Los Angeles. Low impact development (lid) ordinance. October 2011. http://www.
lastormwater.org/wp-content/files_mf/finallidordinance181899.pdf.

73. Wilson L, Osborn M, Olson K, Maida S, Katz L. The ground water recharge and pollu-
tion potential of dry wells in pima county, Arizona. Groundwater Monit Remed 1990;
10(3):114e21.

74. Nelson C, Washburn B, Lock B. Separating fact from fiction: assessing the use of dry wells as
an integrated low impact development (lid) tool for reducing stormwater runoff while protecting
groundwater quality in urban watersheds city of elk grove, California,. Tech. Repp. 12e
452550, City of Elk Grove. March 2017. http://www.elkgrovecity.org/UserFiles/
Servers/Server_109585/File/Departments/Public%20Works/Drainage/Dry%
20Wells/dry-well-doc-11.pdf.

75. Taylor S, Apt D, Candaele R. Potential maximum use of harvested stormwater volume
at a site level. In: World environmental and water resources congress 2011: bearing knowledge for
sustainability; 2011. p. 457e66.

76. Nightingale HI, Mccormick JEARL, Cehrs C. Leaky acres recharge facility : a ten-year
evaluation. J Am Water Resour Assoc 1983;19(3).

77. Lee H, Lau SL, Kayhanian M, Stenstrom MK. Seasonal first flush phenomenon of ur-
ban stormwater discharges. Water Res 2004;38(19):4153e63. https://doi.org/10.1016/
j.watres.2004.07.012.

78. Gale I. Strategies for managed aquifer recharge (MAR) in semi-arid areas. UNESCO; 2005.
79. C. D. of Transportation (Caltrans). Storm water monitoring & data management: discharge

characterization study report. 2003. p. 1e93.
80. Sidhu JPS, Hodgers L, Ahmed W, Chong MN, Toze S. Prevalence of human patho-

gens and indicators in stormwater runoff in Brisbane, Australia. Water Res 2012;46(20):
6652e60. https://doi.org/10.1016/j.watres.2012.03.012.

81. Ahn JH, Grant SB, Surbeck CQ, DiGiacomo PM, Nezlin NP, Jiang S. Coastal water
quality impact of stormwater runoff from an urban watershed in southern California.
Environ Sci TechnolEnviron Sci Technol 2005;39(16):5940e53. https://doi.org/
10.1021/es0501464. http://pubs.acs.org/doi/abs/10.1021/es0501464.

82. Harter T, Dahlke H. Out of sight but not out of mind: California refocuses on
groundwater. Calif Agric 2014;68(3):54e5.

83. Sumner DA, Matthews WA, Medellin-Azuara J, Bradley A. The economic impacts of the
California almond industry: a report prepared for the almond board of California. University of
California Agricultural Issues Center; 2016.

84. Bachand PA, Roy SB, Choperena J, Cameron D, Horwath WR. Implications of using
on-farm flood flow capture to recharge groundwater and mitigate flood risks along the
kings river, ca. Environ Sci TechnolEnviron Sci Technol 2014;48(23):13601e9.

270 Helen E. Dahlke et al.



85. Dahlke H, Brown A, Orloff S, Putnam D, O’Geen T, et al. Managed winter flooding
of alfalfa recharges groundwater with minimal crop damage. Calif Agric 2018:1e11.

86. Bachand P, Roy S, Stern N, Choperena J, Cameron D, Horwath W, et al. On-farm
flood capture could reduce groundwater overdraft in kings river basin. Calif Agric
2016;70(4):200e7.

87. C. D. of Water Resources. Sustainable groundwater management act. Tech. rep. California
Department of Water Resources; 2014.

88. C. D. of Water Resources. Water available for replenishment report. Tech. rep. California
Department of Water Resources; 2017.

89. O’Geen A, Saal M, Dahlke H, Doll D, Elkins R, Fulton A, Fogg G, Harter T,
Hopmans J, Ingels C, et al. Soil suitability index identifies potential areas for ground-
water banking on agricultural lands. Calif Agric 2015;69(2):75e84.

90. Melissa Rohde GM, Choy J. Understanding California’s groundwater. 2014. http://
waterinthewest.stanford.edu/groundwater/recharge/.

91. Medellín-Azuara J, MacEwan D, Howitt RE, Koruakos G, Dogrul EC, Brush CF,
Kadir TN, Harter T, Melton F, Lund JR. Hydro-economic analysis of groundwater
pumping for irrigated agriculture in Californias central valley. Hydrogeol J 2015;23(6):
1205e16.

92. Medellín-Azuara J, MacEwan D, Lund J, Howitt RE, Sumner DA. Agricultural irriga-
tion in this drought: where is the water and where is it going? Agric Resour Econ Update
2015;18(5):5e6.

93. Medellín-Azuara J, MacEwan D, Howitt RE, Sumner DA, Lund JR, Scheer J,
Gailey R, Hart Q, Alexander ND, Arnold B, et al. Economic analysis of the 2016 Califor-
nia drought on agriculture. 2016.

94. Howitt R, Medellín-Azuara J, MacEwan D, Lund JR, Sumner D. Economic analysis of
the 2014 drought for California agriculture. Davis, CA: Center for Watershed Sciences Uni-
versity of California; 2014.

95. B. of Reclamation. San luis reservoir expansion draft appraisal report. Tech. rep. Bureau of
Reclamation; 2013.

96. Bachand P, Horwath W, Roy S, Choperena J, Cameron D. On-farm flood flow capturee
addressing flood risks and groundwater overdraft in the kings basin, with potential applications
throughout the central valley. 2016.

97. Faunt CC, Hanson R, Belitz K. Groundwater availability of the Central Valley aquifer,
California. VA: US Geological Survey Reston; 2009.

98. Harter T, Onsoy YS, Heeren K, Denton M, Weissmann G, Hopmans JW,
Horwath WR. Deep vadose zone hydrology demonstrates fate of nitrate in eastern
San Joaquin Valley. Calif Agric 2005;59(2):124e32. https://doi.org/10.3733/
ca.v059n02p124.

99. Osenbr€uck K, Fiedler S, Kn€oller K, Weise SM, S€ultenfuß J, Oster H, Strauch G. Time-
scales and development of groundwater pollution by nitrate in drinking water wells of
the jahna-aue, saxonia, Germany. Water Resour Res 2006;42(12).

100. Assessment of orchard N losses to groundwater with a vadose zone monitoring
network. Agric Water Manag 2016;172(3):83e95. https://doi.org/10.1016/
j.agwat.2016.04.012.

101. Tomich TP, Scow KM. The California Nitrogen Assessment: challenges and solutions for peo-
ple, agriculture, and the environment. Univ of California Press; 2016.

102. Ransom KM, Nolan BT, Traum JA, Faunt CC, Bell AM, Gronberg JAM,
Wheeler DC, Rosecrans CZ, Jurgens B, Schwarz GE, et al. A hybrid machine learning
model to predict and visualize nitrate concentration throughout the central valley
aquifer, California, USA. Sci Total Environ 2017;601:1160e72.

103. Dahan O, Babad A, Lazarovitch N, Russak E, Kurtzman D. Nitrate leaching from
intensive organic farms to groundwater. Hydrol Earth Syst Sci 2014;18:333e41.

Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management 271



104. Viers J, Liptzin D, Rosenstock T, Jensen V, Hollander A, McNally A, King A,
Kourakos G, Lopez E, De La Mora N, Fryjoff-Hung A, Dzurella K, Canada H,
Laybourne S, McKenney C, Darby J, Quinn J, Harter T. Addressing nitrate in californias
drinking water: Technical report 2: nitrogen sources and loading to groundwater. Tech. rep.
Davis: Center for Watershed Sciences, University of California; 2012.

105. Dzurella K, Pettygrove G, Fryjoff-Hung A, Hollander A, Harter T. Potential to
assess nitrate leaching vulnerability of irrigated cropland. J Soil Water Conserv 2015;
70(1):63e72.

106. Niswonger RG, Morway ED, Triana E, Huntington JL. Managed aquifer recharge
through off-season irrigation in agricultural regions. Water Resour Res 2017.

107. Chen J, Knight R, Zebker HA. The temporal and spatial variability of the confined
aquifer head and storage properties in the San Luis Valley, Colorado inferred from mul-
tiple InSAR missions. Water Resour Res 2017;53(11):9708e20. https://doi.org/
10.1002/2017WR020881.

108. Lehikoinen A, Finsterle S, Voutilainen A, Kowalsky M, Kaipio J. Dynamical inversion
of geophysical ert data: state estimation in the vadose zone. Inverse Probl Sci Eng 2009;
17(6):715e36.

109. Watlet A, Van Camp M, Francis O, Poulain A, Hallet V, Triantafyllou A, Delforge D,
Quinif Y, Van Ruymbeke M, Kaufmann O. Surface and subsurface continuous gravi-
metric monitoring of groundwater recharge processes through the karst vadose zone at
rochefort cave (Belgium). In: AGU fall meeting abstracts; 2017.

110. Niswonger RG, Allander KK, Jeton AE. Collaborative modelling and integrated
decision support system analysis of a developed terminal lake basin. J Hydrol 2014;
517:521e37.

111. Mason valley groundwater model: Linking surface water and groundwater in the
walker river Basin, Nevada1. J Am Water Resour Assoc 2010;46(3):554e73. https://
doi.org/10.1111/j.1752-1688.2010.00434.x.

112. Howell TA. Irrigation efficiency, Encyclopedia of water science. New York: Marcel Dekker;
2003. p. 467e72.

113. Liu S, Nelson K, Yunker D, Corkhill F. Regional groundwater flowmodel of the pinal active
management area, Arizona: model update and calibration. Model report no. 26. Arizona
Department of Water Resource; 2014.

114. Burt C, Howes D, Freeman B. Conversion to groundwater pumping with drip/micro irriga-
tion. Technical report no. r 08-001. San Luis Obispo, California: Irrigation Training
& Research Center, California Polytechnic State University; 2008.

115. Burt C, Howes D, Freeman B. Agricultural water energy efficiency. Technical report no. r
11-007. San Luis Obispo, California: Irrigation Training & Research Center, California
Polytechnic State University; 2011.

116. Ward FA, Pulido-Velazquez M. Water conservation in irrigation can increase water
use. Proc Natl Acad Sci Unit States Am 2008;105(47):18215e20.

117. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL,
McMahon PB. Groundwater depletion and sustainability of irrigation in the us high
plains and central valley. Proc Natl Acad Sci Unit States Am 2012;109(24):9320e5.

118. Hanak E. Managing California’s water: from conflict to reconciliation. Public Policy Instit. of
CA; 2011.

119. Burt C, Monte S. Conversion to ground water pumping with drip/micro irrigation systems.
Technical report no. r 2008-001, PIER Report. Irrigation Training and Research Cen-
ter, California Energy Commission; 2008.

120. Shatz R, Fairman D, Williamson M. Evaluation of potential groundwater recharge areas in
west placer county, California. Project no. 1610374. GEI Consultants; 2017.

121. D. of Water Resources. Sea-water intrusion in California. Report Bulletin 63, State of
California. 1958.

272 Helen E. Dahlke et al.



122. Johnson TA. Ground water recharge using recycled municipal waste water in los
angeles county and the California department of public health’s draft regulations on
aquifer retention time. Groundwater 2009;47(4):496e9.

123. Reichard EG, Land M, Crawford SM, Johnson T, Everett RR, Kulshan TV, Ponti DJ,
Halford KJ, Johnson TA, Paybins KS, et al. Geohydrology, geochemistry, and ground-water
simulation-optimization of the central and west coast basins, los angeles county, California. Tech.
rep. 2003.

124. Johnson T, Whitaker R. Coastal aquifer management-monitoring, modeling, and case studies.
Boca Raton, Florida: CRC Press LLC; 2004 [Ch. Saltwater intrusion in the coastal
aquifers of Los Angeles County, California.].

125. Burris D. Groundwater replenishment system 2014 annual report. Report. Orange County
Water District; 2014.

126. Clark JF, Hudson GB, Avisar D. Gas transport below artificial recharge ponds: insights
from dissolved noble gases and a dual gas (sf6 and 3he) tracer experiment. Environ Sci
Technol 2005;39(11):3939e45.

127. Schmidt CM, Fisher AT, Racz AJ, Lockwood BS, Huertos ML. Linking denitrification
and infiltration rates during managed groundwater recharge. Environ Sci Technol 2011;
45(22):9634e40.

128. Schmidt C, Fisher A, Racz A, Wheat C, Los Huertos M, Lockwood B. Rapid nutrient
load reduction during infiltration of managed aquifer recharge in an agricultural
groundwater basin: Pajaro valley, California. Hydrol Process 2012;26(15):2235e47.

129. Racz AJ, Fisher AT, Schmidt CM, Lockwood BS, Huertos ML. Spatial and temporal
infiltration dynamics during managed aquifer recharge. Groundwater 2012;50(4):562e70.

130. Beganskas S, Fisher AT. Coupling distributed stormwater collection and managed
aquifer recharge: field application and implications. J Environ Manag 2017;200:366e79.

131. Hutchinson AS, Rodriguez G, Woodside G, Milczarek M. Maximizing infiltration
rates by removing suspended solids: results of demonstration testing of riverbed filtra-
tion in orange county, California. Water 2017;9(2):119.

132. USEPA. The class v underground injection control study: Salt water intrusion barrier wells,
Report, vol. 20. United States Environmental Protection Agency; 1999.

133. Bouwer H. Artificial recharge of groundwater: hydrogeology and engineering. Hydro-
geol J 2002;10(1):121e42.

134. C. C. of Regulations, 22 ccr section 60320.201.
135. C. C. of Regulations, 22 ccr section 60320.224.
136. Woodside MWG. Orange county water district groundwater management plan 2015 update,

Report. Orange County Water District; 2015.
137. USDA. Spreading water for storage underground. Report Technical Bulletin 58. United

States Department of Agriculture; 1937.
138. Tech. rep. Basin management plan update. Pajaro Valley Water Management Agency;

2014. https://www.pvwater.org/images/about-pvwma/assets/bmp_update_eir_
final_2014/BMP_Update_Final_February_2014_(screen).pdf.

139. C. C. of Regulations, 22 ccr section 60320.124.
140. Clark JF, Hudson GB, Davisson ML, Woodside G, Herndon R. Geochemical imaging

of flow near an artificial recharge facility, orange county, California. Groundwater 2004;
42(2):167e74.

141. C. C. of Regulations, 22 ccr section 60320.108.
142. Fisher A, Coburn C, Kiparsky M, Lockwood B, Bannister M, Camara K, Lozano S.

Recharge net metering to incentivize sustainable groundwater management. In:
AGU fall meeting abstracts; 2016.

143. Baron JS, Poff NL, Angermeier PL, Dahm CN, Gleick PH, Hairston NG, Jackson RB,
Johnston CA, Richter BD, Steinman AD. Meeting ecological and societal needs for
freshwater. Ecol Appl 2002;12(5):1247e60.

Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management 273



144. Moyle PB, Light T. Biological invasions of fresh water: empirical rules and assembly
theory. Biol Conserv 1996;78(1e2):149e61.

145. Baumgartner LJ, Conallin J, Wooden I, Campbell B, Gee R, Robinson WA, Mallen-
Cooper M. Using flow guilds of freshwater fish in an adaptive management framework
to simplify environmental flow delivery for semi-arid riverine systems. Fish Fish 2014;
15(3):410e27.

146. Galloway DL, Jones DR, Ingebritsen SE. Land subsidence in the United States, vol. 1182.
US Geological Survey; 1999.

147. Farr T, Jones C, Liu Z. Progress report: subsidence in California, March 2015eSeptember
2016. 2017.

148. Williamson AK, Prudic DE, Swain LA. Ground-water flow in the Central Valley. Califor-
nia: Citeseer; 1989.

149. Faunt CC, Sneed M, Traum J, Brandt JT. Water availability and land subsidence in the
Central Valley, California, USA. Hydrogeol J 2016;24(3):675e84. https://doi.org/
10.1007/s10040-015-1339-x.

150. Smith R, Knight R, Chen J, Reeves J, Zebker H, Farr T, Liu Z. Estimating the per-
manent loss of groundwater storage in the southern san joaquin valley, California. Water
Resour Res 2017;53(3):2133e48.

151. Shirzaei M, B€urgmann R, Fielding EJ. Applicability of sentinel-1 terrain observation by
progressive scans multitemporal interferometry for monitoring slow ground motions in
the san francisco bay area. Geophys Res Lett 2017;44(6):2733e42.

152. Conservancy TN, Inc RC. Groundwater and stream interaction in California’s central valley:
insights for sustainable groundwater management. Tech. rep. The Nature Conservancy;
2014.

153. Barlow PM, Leake SA. Streamflow depletion by wellseunderstanding and managing the effects
of groundwater pumping on streamflow. Tech. rep. US Geological Survey; 2012.

154. Dahl TE. Wetlands losses in the United States, 1780’s to 1980’s. report to the congress. Tech.
rep. St. Petersburg, FL (USA): National Wetlands Inventory; 1990.

155. Kope D, Michalska-Hejduk D, Krogulec E. The relationship between vegetation and
groundwater levels as an indicator of spontaneous wetland restoration. Ecol Eng 2013;
57:242e51. https://doi.org/10.1016/j.ecoleng.2013.04.028. http://www.sciencedirect.
com/science/article/pii/S0925857413001468.

156. Dillon P, Pavelic P, Page D, Beringen H, Ward J. Managed aquifer recharge. Introd Wa-
terlines Rep Ser 2009;(13):86.

157. Easton L. Te Arai River Assessment of ecological impact of proposed managed aquifer recharge
trial. Gisborne Distr Council Science Report 2/2015 (October). 2015. p. 1e13.

158. Bouwer H. Integrated water management: emerging issues and challenges. Agric Water
Manag 2000;45(3):217e28. https://doi.org/10.1016/S0378-3774(00)00092-5.

159. Gale I. Strategies for managed aquifer recharge (MAR) in semi-arid areas, Gale, strategies for
managed aquifer recharge (MAR) in semi-arid areas. UNESCOs International Hydrological
Programme (IHP); 2005. p. 33.

160. Dolnicar S, Sch€afer AI. Desalinated versus recycled water: public perceptions and pro-
files of the accepters. J Environ Manag 2009;90(2):888e900.

161. Bekele E, Toze S, Patterson B, Higginson S. Managed aquifer recharge of treated
wastewater: water quality changes resulting from infiltration through the vadose
zone. Water Res 2011;45(17):5764e72. https://doi.org/10.1016/j.watres.2011.08.058.

162. Greenway M. The role of constructed wetlands in secondary effluent treatment and
water reuse in subtropical and arid Australia. Ecol Eng 2005;25(5):501e9. https://
doi.org/10.1016/j.ecoleng.2005.07.008.

163. Angelakis A, Gikas P. Water reuse: overview of current practices and trends in the
world with emphasis on EU states. Water Util J 2014;8:67e78.

274 Helen E. Dahlke et al.



164. Zekri S, Ahmed M, Chaieb R, Ghaffour N. Managed aquifer recharge using quaternary-treated
wastewater: an economic perspective. 2014. https://doi.org/10.1080/07900627.2013.837370.

165. Roberts PH, Thomas KV. The occurrence of selected pharmaceuticals in wastewater
effluent and surface waters of the lower Tyne catchment. Sci Total Environ 2006;
356(1e3):143e53. https://doi.org/10.1016/j.scitotenv.2005.04.031.

166. Lee KS. A review on concepts, applications, and models of aquifer thermal energy stor-
age systems. Energies 2010;3(6):1320e34.

167. Gao Q, Li M, Yu M, Spitler JD, Yan Y. Review of development from gshp to utes in
China and other countries. Renew Sustain Energy Rev 2009;13(6e7):1383e94.

168. Wang W, Sun X, Xu Y. Recent advances in managed aquifer recharge in China. In:
Challenges in environmental science and computer engineering (CESCE), 2010 international
conference on, vol. 2. IEEE; 2010. p. 516e9.

169. Cao G, Zheng C, Scanlon BR, Liu J, Li W. Use of flow modeling to assess sustain-
ability of groundwater resources in the north China plain. Water Resour Res 2013;
49(1):159e75.

170. Grau-Martínez A, Folch A, Torrent�o C, Valhondo C, Barba C, Dom�enech C, Soler A,
Otero N. Monitoring induced denitrification during managed aquifer recharge in an
infiltration pond. J Hydrol 2018.

171. Beganskas S, Weir W, Harmon R, Gorski G, Fisher A, Saltikov C, Young K,
Runneals D, Teo E, Stoneburner B, et al. Applying reactive barrier technology to
enhance microbially-mediated denitrification during managed aquifer recharge. In:
AGU fall meeting abstracts; 2015.

172. Werner D, Bakker M, Post VE, Vandenbohede A, Lu C, Ataie-Ashtiani B,
Simmons CT, Barry DA. Seawater intrusion processes, investigation and management:
recent advances and future challenges. Adv Water Resour 2013;51:3e26.

173. The California water code. 2017. http://leginfo.legislature.ca.gov/faces/codesTOC
Selected.xhtml?tocCode¼WAT&tocTitle¼þWaterþCodeþ-þWAT.

174. Kuichling E. The relation between the rainfall and the discharge of sewers in populous
districts. Trans Am Soc Civ Eng 1889;20(1):1e56.

175. Engineers M. Evaluation of state water resources control board water availability analysis. Tech.
rep. California State Water Resources Control Board; 2001.

176. Grantham TE, Viers JH. 100 years of Californias water rights system: patterns, trends
and uncertainty. Environ Res Lett 2014;9(8):084012.

Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management 275


