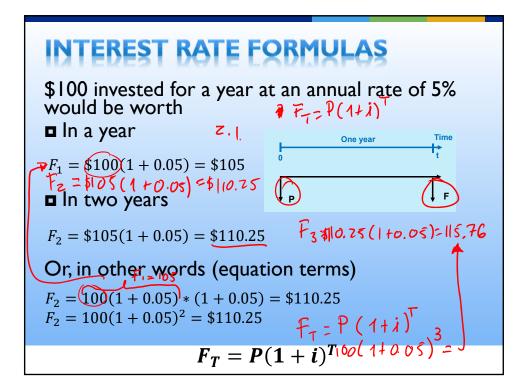
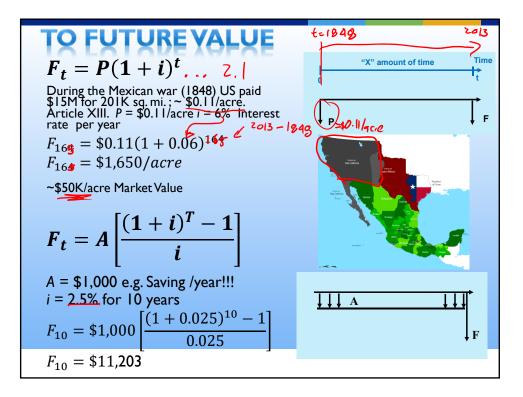
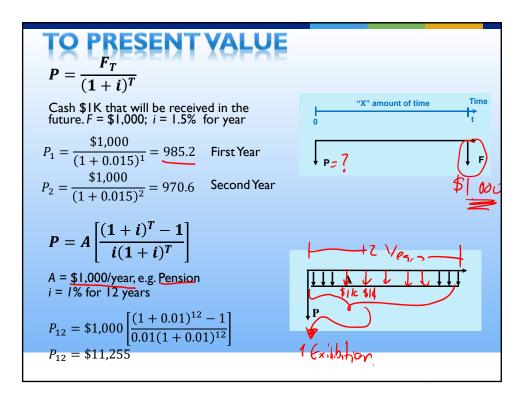
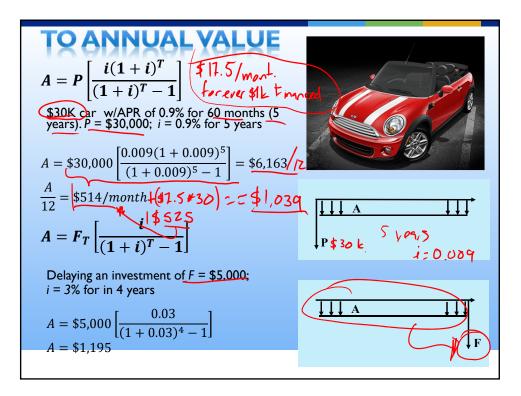
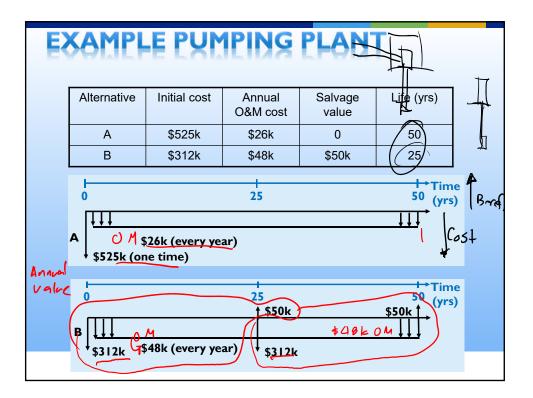

(COST - BENEFIT ANALYSIS)

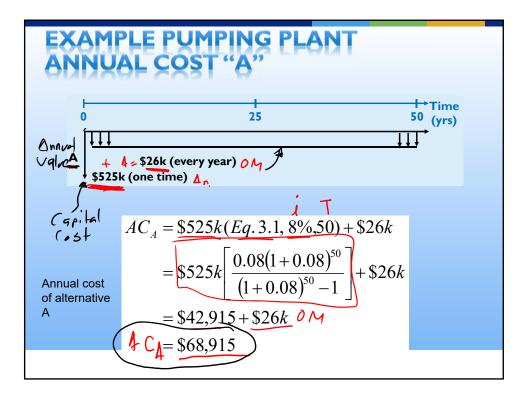

Goals

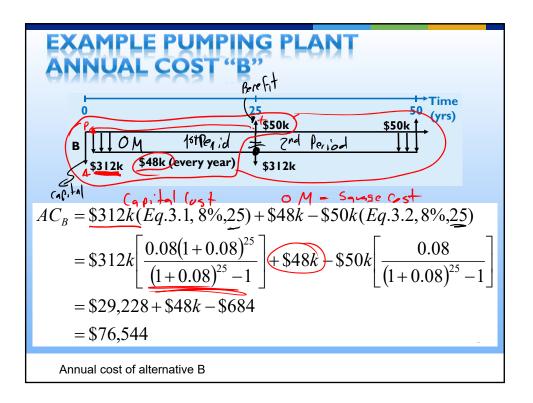

- Ensure that the projects use capital efficiently
- Provide a framework for comparing alternative projects
- Estimate the impacts of regulatory changes

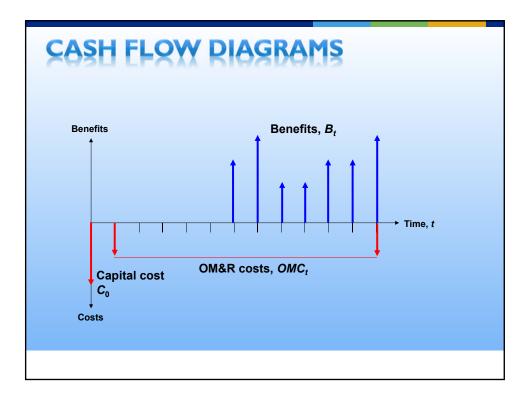

Basic Principle

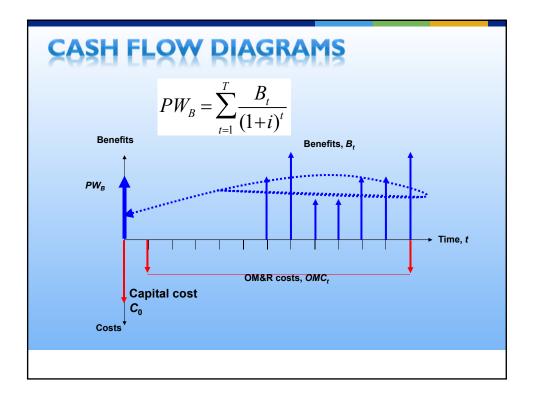

- Project benefits must exceed cost
- Definition: Net Benefits = Benefits Cost

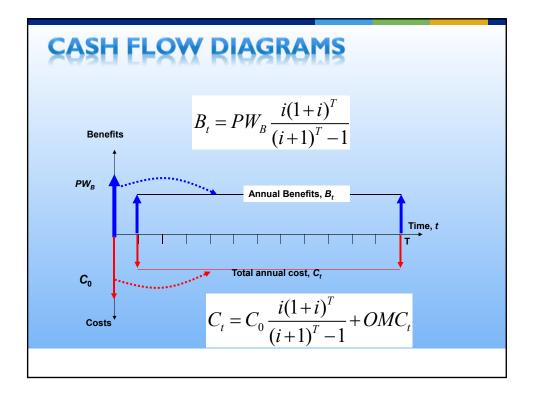


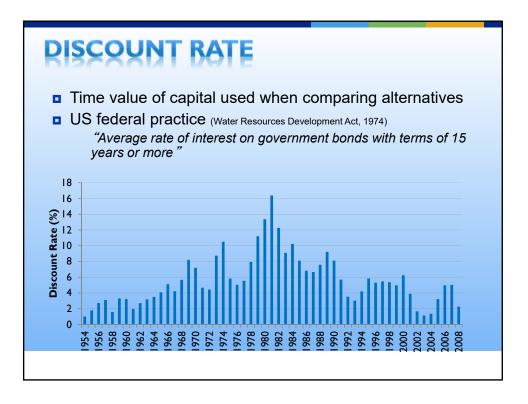


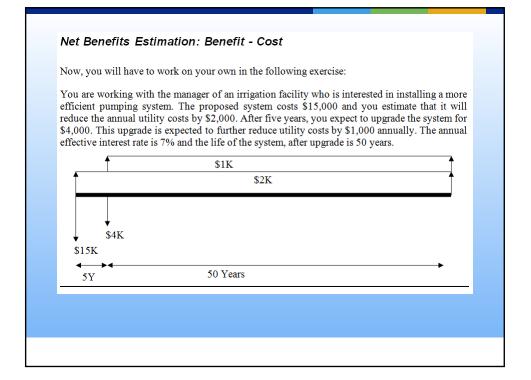


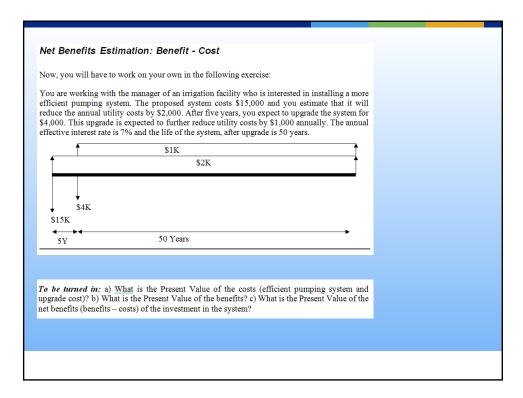


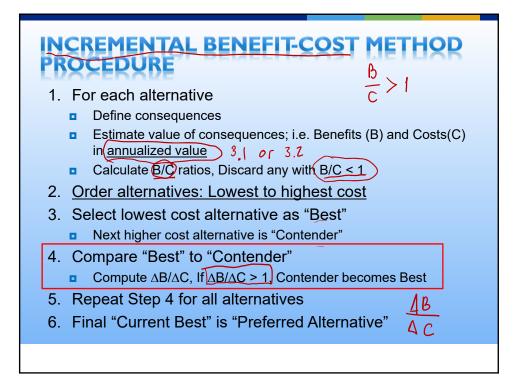


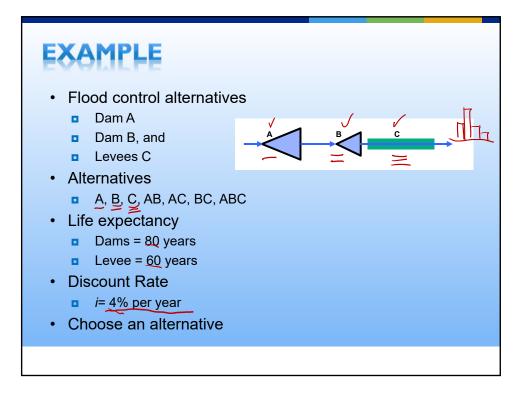





SAMPL	E PYP	PING	PLON'	r i		
Alternative	Initial cost	Annual O&M cost	Salvage value	Life (yrs)		
А	\$525k	\$26k	0	50		
В	\$312k	\$48k	\$50k	25		
A \$525k (or	5 26 k (every ye ne time)	ar)	$AC_A = \$68.915$			
0 B ↓↓↓ \$312k \$	48k (every yea	25 \$50k ar) \$312k	$AC_B = $	50 (yrs) \$50k↑ ↓↓↓ 76,544		






COSTS AND BENEFITS Express in similar units (e.g. \$'s) Compare for each alternative Viewpoint is important Some groups are concerned with benefits, others with costs Compare differences between alternatives Do not consider effects on attributable to alternatives Opportunity Cost Opportunities (net benefits) forgone in the choice of one expenditure over others

<section-header> COSTES OF ALTERNATIVES Direct costs of each alternative Capital cost Acquisition of land and materials, construction cost Opportunity cost (what you COULD have made) Operation, maintenance and replacement costs Dadirect cost of each alternative Cost imposed on society or the environment Datation techniques Market value Capital cost and O&M costs Benefits from revenues from future deliveries of water No market value? Then What? Value = cost of cheapest alternative Value can be estimated in other ways

THINGSTO CONSIDER Investors always prefer early return on investment because the have more flexibility in making future investment decisions, Benefits and costs at different times should not be directly compared (they are not in common units) Future benefits and cost must be multiplied by a factor that becomes progressively smaller into the future (discount rate) Committing resources to one project may deny the possibility of investing in some other project. What is the opportunity cost or what must be forgone in order to undertake some alternatives

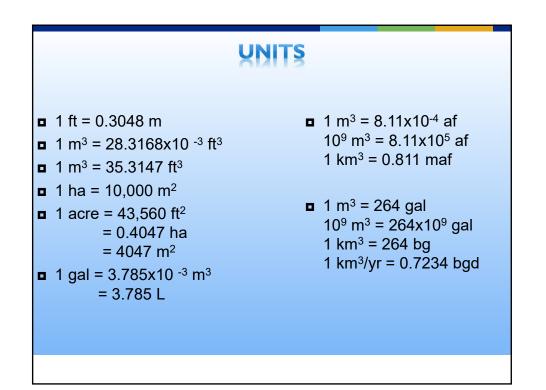
STE	21	ĥ		B ⊂ C	→
	Project	Capital Cost (million \$)		Flood Damages (million \$/year)	2
0	Do nothing	0	0 •	2.0	
	A (dam)	6	0.09	1.1	
	B (dam)	(5)	0.08 ·	1.3	
	C (levee)	6	0.10	0.7	
	AB 🔓	+5=11 00	<u>9+0.09</u> 0.17	0.9 🖌	
	AC 🔓	+6 12 0.01	+0.100.19	0.4 🖌	
	BC	П	0.18	0.5 🖌	
	ABC	17	0.27	0.25 🖌	

	STEP $[0.04(1+0.04)^{80}]$ $z 0.75$											
	e.g. Dam A: $A = 6 \left[\frac{0.04(1+0.04)^{80}}{(1+0.04)^{80}-1} \right] = 0.75$											
	$ \begin{array}{c} (1) \\ (1 = \operatorname{Eq}(3, 1) \end{array} $ (2) (3) (3 = 1 + 2) (3 = 1 +											
	Project	Life (years)	Annual Capital C (mln \$/year)	ost	O&M (mln \$/year)		Costs (mln \$/year))					
~	Do nothing	j	<u> </u>	/	0		0					
Û_	- ₽ A (dam)	80(0.04	20,6-10.251	+	0.090	-	0.341					
	B (dam)	80 🖌	∕ ₅₽0.209	+	0.080	2	0.289					
	C (levee)	60 (0, 04	, 60,6) 0.265	+	0.100	=	0.365					
	AB	0.25	+0.209 0.460	+	0.170	2	0.630					
	AC		0.516		0.190		0.706					
	BC		0.474		0.180		0.654					
	ABC		0.725		0.270		0.995					

S	FEP I:	BENEFIT	S				
		<u> </u>				B C	→
		(1)		(2)		(3)	
						(3=1-2)	
	Project	Do-nothing Damages (mln \$/year)		Damages (mln \$/year)		Benefits (mln \$/year)	
a	Do nothing	2.0		2.0		0	
	A (dam)	2.0	-	1.1	-	. 0.9	
	B (dam)	2.0	-	1.3	-	. 0.7	
	C (levee)	2.0	-	0.7	-	L.3	
	AB	2.0	-	0.9	-	► I.I	
	AC	2.0		0.4		1.6	
	BC	2.0		0.5		1.5	
	ABC	2.0		0.25		1.75	
				N.			

STE	2	-		
	Project	Benefits (mln \$/year)	Costs (mln \$/year)	Rank
-	Do nothing	0.00	0.00	≰ I Je
	B (dam)	0.90	0.289	2
	A (dam)	0.70	0.341	3
	C (levee)	1.30	0.365	5 4
	AB	1.10	0.630	5
	BC	1.60	0.654	6
	AC	1.50	0.706	7
	ABC	1.75	0.995 🖞	\$\$\$\$ 8

₿	AB-S METHOR: STEP 3 ANR 4										
Compare	Project	Benef. (B) (mln\$/y)	. ,	B/C	∆B (mln\$/y)	ΔC (mln\$/y)	ΔΒ/ΔC	Decision			
	Do Nothing	Ű		_ 2.42 7 ≬	0.700	9 0.289 0.2 3 9 - 0	2.427 Contender Best				
	Compute $\Delta B/\Delta C$, If $\Delta B/\Delta C > 1$, Contender becomes Best										
	e.g., A	> B means	alternative	e A is pre	eferred ov	er alternativ	e B				


₿	AB-S METHOR: STEP 3 ANR 4									
Compare	Project	Benef. (B) (mln\$/y)	· · ·	B/C	∆B (mln\$/y)	ΔC (mln\$/y)	ΔΒ/ΔC	Decision		
	Do Nothing									
θ-Β	\bigcirc				0.700	0.289	2.42	B > θ		
Bost	B (dam)	0.700	0.289	2.42		1	· · · ·	_		
B-A		0.000	0.044	0.04	0.200	0.052	3.867	A > B		
Contender		0.900 /	0.341	2.64 🗸	0.9-0.1					
	Best					0.289				
	Compute $\Delta B/\Delta C$, If $\Delta B/\Delta C > 1$, Contender becomes Best									
	e.g.,A	> B means	alternative	e A is pre	eferred ov	er alternativ	e B			

₿	AB-S METHOR: STEP 3 AND 4										
Compare	Project	Benef. (B) (mln\$/y)	Cost (C) (mln\$/y)	B/C	ΔB (mln\$/y)	∆C (mln\$/y)	ΔΒ/ΔC	Decision			
	Do Nothing										
θ-Β					0.700	0.289	2.42	B > θ			
	B (dam)	0.700	0.289	2.42							
B - A					0.200	0.052	3.86	A > B			
Best	A (dam)	0.900	0.341	2.64		,					
A - C	\frown		,		0.400	0.024 🔁	16.44	C > A			
Contend											
	Com	pute $\Delta B/\Delta C$	C, If $\Delta B/\Delta C$	C > 1, C	ontender	becomes B	est				
	e.g., A	> B means	alternative	e A is pre	eferred ov	er alternative	e B				

₿	AB-S METHOR: STEP 3 ANR 4										
Compare	Project	Benef. (B) (mln\$/y)	Cost (C) (mln\$/y)	B/C	∆B (mln\$/y)	∆C (mln\$/y)	ΔΒ/ΔC	Decision			
	Do Nothing										
θ-Β	-	C	(P)		0.700	0.289	2.42	B > θ			
	B (dam)	0.700	0 289	2.42							
B - A					0.200	0.052	3.86	A > B			
	A (dam)	0.900	0.341	2.64							
A - C		\square			0.400	0.024	16.44	C > A			
	C (levee)	1.300	0.365	3.56			\frown				
C-AB					-0.200	0.265	-0.76	C > AB			
Contender	AB	1.100	0.630 5 7	1.75	[.]-].3						
			54:	\$3							
	Com	oute $\Delta B/\Delta C$	C, If $\Delta B/\Delta C$	C > 1, C	ontender	becomes E	Best				
	e.g., A	> B means	alternative	A is pre	eferred ove	er alternativ	e B				

A ∎	AB-S METHOR: STEP 3 ANR 4										
Compar	re Project	Benef. (B) (mln\$/y)	Cost (C) (mln\$/y)	B/C	ΔB (mln\$/y)	∆C (mln\$/y)	ΔΒ/ΔϹ	Decision			
	Do Nothing										
θ-Β					0.700	0.289	2.42	B > 0			
	B (dam)	0.700	0.289	2.42							
B - A					0.200	0.052	3.86	A > B			
	A (dam)	0.900	0.341	2.64							
A-C					0.400	0.024	16.44	C > A			
Best	C (levee)	1.300	• 0.365	3.56							
C-AB					-0.200	0.265	-0.76	C > AB			
	AB	1.100	0.630	1.75		1					
C - BC	:		1		0.200	0.289	0.694	C > BC			
Conta	BC BC	1.500	• 0.654	2.29 ¥	1.5-1.3	_					
			-								
	Com	oute $\Delta B/\Delta C$	C, If $\Delta B/\Delta C$	C > 1, C	ontender	becomes B	lest				
	e.g.,A	> B means	alternative	e A is pre	eferred ove	er alternative	e B				

β₿	SM	THS	R: S	TE	254	NR 8	8	
				1	V	U		
Compare	Project	Benef. (B) (mln\$/y)	Cost (C) (mln\$/y)	B/C	∆B (mln\$/y)	∆C (mln\$/y)	ΔΒ/ΔC	Decision
	Do Nothing		/ *					
θ - Β	D (daw)	0 700		0.40	0.700	0.289	2.42	B > θ
B - A	B (dam)	0.700	0.289	2.42	0.200	0.052	3.86	A > B
	A (dam)	0.900	0.341	2.64	0.200	0.052	0.00	A > D
A-C				6	0.400	0.024	16.44	C>A
4	C (levee)	1.300	0.365	(3.56)				\sim
C - AB	4.0	1 1 0 0	0.000	4.75	-0.200	0.265	-0.76	C > AB
C - BC	AB	1.100	0.630	1.75	0.200	0.289	0.69	C > BC
	BC	1.500	0.654	2.29	0.200	0.200	0.000	0, 00
C - AC					0.300	0.341	0.88	C > AC
	AC	1.600	0 .706	2.27			-	
C - ABC	ADC	1 750	0.005	4 70	0.450	0.630	0.71	C > ABC
	ABC	1.750	0.995 ₽ ≛\$ \$	1.76				
	Com	oute $\Delta B/\Delta 0$	C, If $\Delta B/\Delta C$	C > 1, C	ontender	becomes E	Best	
	e.g.,A	> B means	alternative	e A is pre	eferred ove	er alternativ	e B	

