ESM 121

Water Science and Management

Exercise 7:

Risk Analysis

and

Expected Monetary Value

Samuel Sandoval Solis, PhD

Table of Contents

Objective	. :
Useful Formulas	
Expected Monetary Value	
Exercise 1 (Adopted from Loucks and van Beek Problem 7.5).	
Exercise 2 (Adopted from Loucks and van Beek Problem 7.5).	
Multiple Random Variables	
Exercise 3 (Adopted from Robert Gilbert).	
Exercise 4 (Adopted from Robert Gilbert).	

Objective

The objective of this exercise is to provide a set of exercises of a benefit-cost analysis that consider risk analysis by using the expected monetary value method.

Useful Formulas

Expected Monetary Value

$$E[X] = \sum_{i} x_{i} p_{X}(x_{i})$$

Marginal Distribution

$$p_X(x) = \sum_{y} [p_Y(y) * p_{X|Y}(x|y)]$$

Conditional Distribution

$$p_{X|Y}(x|y) = \frac{p_{XY}(x,y)}{p_{Y}(y)}$$

Joint Distribution

$$p_{XY}(x,y) = p_Y(y) * p_{X|Y}(x|y)$$

Expected Monetary Value

Exercise 1 (Adopted from Loucks and van Beek Problem 7.5).

Table 1 shows the data of expected benefits and cost for recreation activities on a determined reservoir. Using the data provided in Table 1, on possible recreation benefits, cost (recreation losses).

1) Estimate the Net Benefits

Table 1.- Data of associated benefits and cost for the

Summer storage level (ft)	Probability of storage level	Average Benefits (thousand \$)	Decrease in recreation benefits (Cost) (thousand \$)	Net Benefits (thousand \$)
200	0.1	10	5	
250	0.2	10	2	
300	0.4	10	0	
350	0.2	10	1	
400	0.1	10	4	

2) Estimate the *Expected* Net Benefits

Exercise 2 (Adopted from Loucks and van Beek Problem 7.5).

Table 2 shows the data on irrigated agricultural yields for rice. The crop yield varies with respect to the water applied per hectare. The capital cost to grow a hectare of rice is \$3,160. The current market price for a ton of rice is \$325 per ton.

- 1) Estimate the benefits for each type of irrigation water allocation
- 2) Estimate the net benefits per acre for each water allocation

Table 2

Water Allocation (acre-feet)	Probability of Allocation	Cost to grow rice (\$/acre)	Crop Yield (ton/acre)	Market Price of Rice (\$/ton)	Benefits (\$/acre)	Net benefits (\$/acre)
1	0.2	\$3,160	6.5	\$325		
2	0.3	\$3,160	10	\$325		
3	0.3	\$3,160	12	\$325		
4	0.2	\$3,160	11	\$325		

3) Estimate the expected net benefits using the probability of allocation and the Net Benefits.

Multiple Random Variables

Exercise 3 (Adopted from Robert Gilbert).

Table 3 shows the joint distribution of the hours that a driller machine was tested and the productivity associated with that time.

1) Estimate the joint Probability Mass Function (also known as Joint Distribution or Relative Frequency) of the data.

Table 3						
Duration	Productivity	Productivity	Number of	Joint PMF		
Χ	Υ	Υ	Observations	$P_{X,Y}(x,y)$		
(hr)	(%)	(\$)				
6	50	750	2			
6	70	1050	5			
6	90	1350	10			
8	50	750	5			
8	70	1050	30			
8	90	1350	25			
10	50	750	8			
10	70	1050	25			
10	90	1350	11			
12	50	750	10			
12	70	1050	6			
12	90	1350	2			
			139			

- 2) Estimate the <u>marginal distribution</u> for the Duration (X-variable)
- 3) Estimate the conditional distributions for each productivity given a determined duration

4)	Build a decision	tree with the	marginal,	conditional	and joint	distributions.

5) Estimate the expected value using the decision tree.

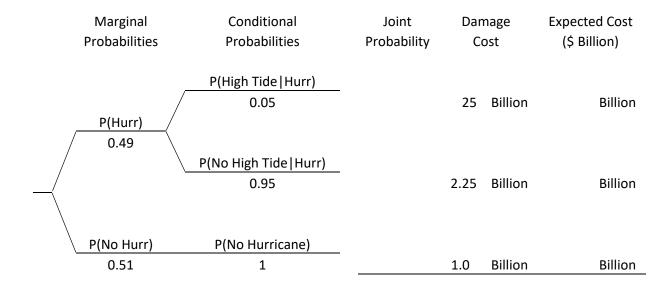
Exercise 4 (Adopted from Robert Gilbert).

Last year, hurricane Sandy did a lot of damage to the East coast. According to NOAA, the probability that the East coast is hit by a hurricane is 0.49 each year. Also, the probability that a high tide occur during (given) a hurricane is very small, 0.05. According to experts, the estimated damage that Sandy caused is \$50 Billion! The average damage that (typical) hurricanes cause is \$4.5 Billion.

1) The following table decision tree show the Marginal and Conditional probabilities of the No-action Scenario, meaning, do not built structures to mitigate hurricane damages. Estimate the joint probabilities and the expected coast for this no action scenario.

Marginal		Joint		mage	Expected Cost
Probabiliti	es Probabilities	Probability	C	ost	(\$ Billion)
D/II)	P(High Tide Hurr) 0.05	-	50	Billion	Billion
P(Hurr) 0.49					
	P(No High Tide Hurr)	_			
/	0.95		4.5	Billion	Billion
P(No Huri	r) P(No Hurricane)	_			
0.51	1		0	Billion	Billion

2) Now, let's consider the scenario where \$1 billion is spent every year despite the fact that a hurricane happens or not (in the no "No Hurricane" branch). Also, let's consider that because of this investment the damage cost when Hurricanes happen (with and without Hide Tide) occur is reduced by half (\$25 Billion in the High Tide|Hurricane and \$2.25 Billion in the No High Tide|Hurricane). Estimate the joint probabilities and the expected coast for this no action scenario.



3) Compare the expected cost of both scenarios, which one is smaller? Which project would you select?