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Abstract: Enhanced socioeconomic criteria and temporal changes in the topology of the system often require waste load reallocation
(WLRA) in a river-reservoir system to sustain long-term water quality standards. In addition to climate and hydrological changes, hydrologic
fragmentation and dam construction may significantly affect the waste-accepting capacity of the water body through changes in its physical,
chemical, and even biological characteristics. Deterministic waste load allocation optimization designs are often bounded with a set of rigid
constraints. These constraints do not allow any flexibility to account for uncertainties and the possibility of system failure. This paper presents
a reliability-based waste load reallocation model in a complex river-reservoir system. We have linked a physical and surrogate simulation
model with the Particle Swarm Optimization algorithm to present an efficient methodology for reallocating waste loads in a river-reservoir
system with reliability constraints. Reliability requirements are addressed by different sets of constraints in three different formulations for the
entire planning horizon. The problem, as defined, contains real and integer variables, and is formulated as a mixed-integer nonlinear
programming problem. It finds the maximum values of monthly waste loads that may be discharged into the river-reservoir system under
predefined reliability constraints. The surrogate model itself is refined using an online dynamic routine which makes it suitable for planning
waste load allocation in multiperiod and high-dimensional system optimization under reliability-based water quality constraints. The pro-
posed model is applied to the Karkheh river-reservoir system to illustrate its performance under various reliabilities. DOI: 10.1061/(ASCE)
WR.1943-5452.0000973. © 2018 American Society of Civil Engineers.
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Introduction

Any changes in the topology of water bodies and/or socioeconomic
criteria will often require waste load reallocation (WLRA) in river-
reservoir systems. A waste load reallocation (WLRA) model finds
the required levels of pollutant treatments for different waste dis-
chargers as a system’s topology changes and/or as social and
economic criteria are enhanced (Afshar and Masoumi 2016). To
develop the best allocation strategy under new topological condi-
tions, a WLRA model may couple an optimization algorithm with a
physical water quality simulation model. Application of determin-
istic waste load allocation (WLA) models have been reported by
Takyi and Lence (1999), Burn and Yulianti (2001), and, recently,
Parmar and Keshari (2014). Fuzzy concepts and mathematics have
widely been used to tackle the uncertainties in WLA models
(Sasikumar and Mujumdar 2000; Ghosh and Mujumdar 2006;
Saadatpour and Afshar 2007). In a recent work, Nikoo et al.
(2013), used a fuzzy transformation technique for optimal alloca-
tion of water and waste load in rivers. Although earlier works have
mainly dealt with single-objective frameworks (Burn and McBean

1985; Fujiwara et al. 1986), more recent researchers have empha-
sized multiple-objective optimization (Burn and Yulianti 2001;
Yandamuri et al. 2006; Karmakar and Mujumdar 2006). A brief
literature survey reveals that almost all previous research has
tackled the WLA problem in river networks without any water
augmentation or storage facilities.

In addition to climate and hydrological changes, hydrologic
fragmentation and dam construction may significantly affect the
waste-accepting capacity of a water body through changes in its
physical, chemical, and even biological characteristics (Harmon
et al. 2014; Friedl and Wuest 2002). Although use of one-
dimensional (1D) simulation models may be sufficient for assess-
ing water quality in rivers (Dai and Labadie 2001; Chaves and
Kojiri 2005; Kerachian and Karamouz 2006), more detailed
two- or three-dimensional (2D or 3D) models should be utilized
for simulation of river-reservoir systems. Realizing the computa-
tional burden, use of 2D or 3D physical water quality simulation
models in design optimization with water quality targets has not
been addressed extensively in the literature. The issue may be even
more complex and computationally expensive if uncertainties in
reservoir inflow and waste load generation are embedded into
the procedure.

Addressing water quality in a river-reservoir system, Kerachian
and Karamouz (2007) combined a genetic algorithm with a conflict
resolution technique to optimally operate a river-reservoir system in
Iran. They simplified the system by using a simulation model for
salinity and temporal stratification. Assuming a completely mixed
storage node, a WLA model was proposed by Nikoo et al. (2014)
for a river-reservoir system. The computational burden of a
simulation-optimization (S-O) model which combines a process-
based river-reservoir water quality model with an optimization al-
gorithm has widely been addressed (Ostfeld and Salomons 2005;
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Castelletti et al. 2011). For given optimization algorithms, parallel
computing, response surface methodology, and surrogate modeling
are often recommended to manage the computational burden of
large-scale S-O models (Emami Skardi et al. 2015). Surrogate mod-
els may be used to approximate the behavior of an original model
while keeping the size and scope of the problem unchanged
(Wagner 1995). A data driven metamodel may be used as a surro-
gate model to reduce the computational cost of a physical simula-
tion model over a range of field-measured and/or synthetic data.
The synthetic data is often produced by running the original sim-
ulation model for different scenarios. Metamodeling for the
approximate solution of large-scale S-O problems has received
increasing attention (Mousavi and Shourian 2010). Various meta-
models have successfully replaced computationally-expensive sim-
ulation models for optimum design and operation of environmental
and water resources systems (Wang and Shan 2006; Shourian et al.
2008; Zhang et al. 2009; Emami Skardi et al. 2015). However,
replacing a 2D water quality model for simulation of a river-
reservoir system with a surrogate model in an S-O framework
has not been widely approached (Castelletti et al. 2009; Afshar and
Masoumi 2016).

This paper presents an S-O model to derive a reliability-based
waste load reallocation plan for a river-reservoir system. The
planning model intends to present a methodology for refining the
planning strategy for WLA in a river-reservoir system. It couples
CE-QUAL-W2, a 2D physical water quality simulation model,
with an improved version of the particle swarm optimization
(PSO) algorithm to optimally reallocate waste loads in a river-
reservoir system with reliability constraints. Reliability require-
ments are addressed by different sets of constraints. The model
consists of real and integer variables, and hence is formulated as
a mixed-integer nonlinear programming problem. The model as-
sesses the consequences of any temporal and spatial waste load
on the system under predefined reliability constraints. Spatial and
temporal variation of selected state variables are estimated and
refined, benefiting from a simulation and artificial neural network
(ANN)-based surrogate model. The surrogate model itself is refined
using an online dynamic routine. The proposed methodology may
be suitable for any multiperiod S-O problem with water quality and
quantity objectives. Application of the model and its performance is
illustrated using data from the Karkheh river-reservoir for various
reliabilities.

Reliability-Based Waste Load Allocation in
River-Reservoir Systems

Reliability Concept

In a deterministic waste load allocation optimization, the designs
are often bounded with a set of rigid constraints. Whereas reliable
design intends to limit the chance of failure to within an allow-
able low level (Agarwal 2004), reliability-based optimum design
(RBOD) identifies optimal design for a fixed failure probability.
If justified, RBOD compromises between higher reliability and
lower cost of the system. Compared to deterministic optimization,
in RBOD formulation the critical modes of failure are replaced with
a set of constraints addressing the probabilities of failures. Proba-
bility constraints may be used to address single or multiple mea-
sures of system sustainability, such as reliability, resilience, and
vulnerability. These constraints may correspond to the failure prob-
ability of one single or the entire system’s failure modes (Agarwal
2004). Reliability, resilience, and vulnerability (RRV) are often
used as indices to assess the performance of water resources

management policies in meeting predefined quality and/or quantity
targets (Hashimoto et al. 1982).

Defining S and U as sets of satisfactory and unsatisfactory
states, the system is in a satisfactory state if desired water quality
conditions are met at all checkpoints during that period:

Xi;t ∈ S; ∀ i ð1Þ

where Xi;t = pollution concentration at checkpoint i during period t.
Based on this criterion, the system is in unsatisfactory condition if
the target quality is not met at least at one single checkpoint. Here,
we address a satisfactory state by Yt ¼ 1, and zero otherwise:

Yt ¼
�
1 if Xi;t ∈ S; ∀ i

0 otherwise
ð2Þ

In a multiperiod problem with multiple checkpoints, the total
number of observations will be equal to C ¼ i × t. Based on
our definition of total number of temporal and spatial observations
C, the reliability of the system in meeting the prespecified quality
target is presented as

ReliabilityRðqÞ ¼
P

TP
t¼1 Yt

TP
ð3Þ

where TP = total simulation time; and superscript q stands for qual-
ity. This definition assumes the system is in unsatisfactory condi-
tion if it does not meet quality restrictions at all checkpoints. In
other words, if the prespecified quality requirement is not met at
a single checkpoint, a failure is registered for the entire system.

Model Structure

Reliability of waste load allocation may be defined as the proba-
bility that the allocated wastes to the dischargers will meet the re-
quired standards, i.e., provide the water quality requirements at all
checkpoints in the specified period under the stated conditions.
The problem is a nonlinear multiperiod optimization problem
with a computationally-expensive simulation model. On a 3.4 GHz
Pentium IV processor (Core i7-2600, Green Pars, Iran) with 8 GB
RAM, each simulation run for 66 longitudinal segments and
55 layers (high-resolution setup) takes 160 min. For a low-resolution
setup with only 19 longitudinal segments and 28 vertical layers, a
simulation run is reduced to 23 min. Therefore, for tens of thou-
sands of function evaluations in a simulation-optimization frame-
work, the total computing time may theoretically exceed a few
years. For the case example of this study with the proposed
low-resolution setup, the computational time was reduced by more
than 92%, whereas prediction accuracy was sacrificed by less
than 4.8%.

Following the reliability concept, the WLA in a river-reservoir
system may be treated as an RBOD in which the total waste loads
reallocated to the dischargers may be maximized. Theoretically,
the model may be formulated either as a single-objective problem
under an imposed set of reliability constraints over the operation
horizon, or formulated as a biobjective problem in which reliabil-
ity is treated as another objective. The latter case may provide
the whole spectrum of solution strategies impacting a system’s reli-
ability. Although its theoretical formulation is quite easy and
straightforward, the solution would be extremely time-consuming.
Reliability is a continuous variable and the resulting external ar-
chive (to store nondominated solutions) would be very large, which
exponentially increases computational time. Even with the help of
surrogate data-driven models, computer run time may exceed days
or weeks, if convergence ever occurs. In fact, this is an ongoing
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research in our research group, and the required improvements in
solution strategy and possible achievements may be reported sub-
sequently. This paper uses the former approach, in which reliability
is included as a set of constraints over the entire operation horizon.

In a river–reservoir system, the reliability constraints may be
imposed on running segments of the system (the river), inside
the reservoir, or both. These reliability constraints are imposed both
in spatial and temporal scales. In the absence of nonpoint sources,
the single-objective reliability-based WLRA in a river-reservoir
system may be formulated as

Maximize Loading ¼
XD
i¼1

X12
τ¼1

Loadi;τ ð4Þ

Subject to

RSt ¼ RSðuÞt þ RSlt t ¼ 1; 2; : : : ; TP ð5Þ

Stþ1 ¼ St þ It − Et − RKt − RSt t ¼ 1; 2; : : : ; TP ð6Þ

Smin ≤ St ≤ Cap t ¼ 1; 2; : : : ; TP ð7Þ

RSt ≥ RE t ¼ 1; 2; : : : ; TP ð8Þ

Et ¼ fðSt; Stþ1; hetÞ t ¼ 1; 2; : : : ;TP ð9Þ

ReliabilityRðqÞ ¼
P

TP
t¼1 Yt

TP
ð10Þ

Yt ¼
�
1 if Ci;t ∈ S1 for∀ i

0 Otherwise
t ¼ 1; 2; : : : ; TP ð11Þ

RðqÞ ≥∝ðqÞ ð12Þ

Cj;t < βquality × Cstandard t ¼ 1; 2; : : : ;TP; j ¼ 1; 2; : : : ;M

ð13Þ
where S1 and U1 refer to satisfactory and unsatisfactory states for
quality constraints, respectively; water released from the upper and
lower intakes of the reservoir is represented by RSðuÞt and RSlt,
respectively; Loadi;t = allocated waste load to discharger i in
period t (decision variable); ∝ðqÞ refers to the required reliability
levels for water quality; TP,D, andM = simulation period, number
of point sources (dischargers), and the number of checkpoints, re-
spectively; Cj;t = concentration of phosphate at checkpoint j and
month t; Cstandard = standard value of phosphate concentration;
Cap = reservoir full capacity; St refers to reservoir storage at
the beginning of month t; and It, and Et = volumetric inflow
and evaporation to and from the reservoir. Monthly net evaporation
height, controlled release, spill, and environmental flow are repre-
sented by het, RSt, RKt and RE, respectively. The last constraint
[Eq. (13)] imposes another restriction on the upper bound of quality
violation. Although we may accept failures defined by the reliabil-
ity constraints, the concentration of the pollutant (i.e., phosphorous)
in the failed periods is not allowed to exceed the prespecified
percentage (βquality). Loading may have monthly variations over
the planning horizon; however, it is kept unchanged from one year
to the next during the planning horizon.

This formulation, the F1 formulation, flags a success only if all
checkpoints during the current period (day) fully satisfy the quality
constraints. In other words, a failure will be flagged if a quality
constraint violation is observed in one (or more) checkpoints.
One may, however, define the reliability based on average quality
parameters over all checkpoints. In this formulation, the F2

formulation, the average reliability for all checkpoints for any time
step is calculated. In this case, at each time step, the reliability lev-
els for all checkpoints are calculated individually and the average
value is reported as the system’s reliability. In the F2 formulation,
failure at a single checkpoint may not fully account for the system’s
failure. In other words, it reduces the system’s overall reliability per
its observed reliability. In the F2 formulation, the definition of
reliability [Eqs. (10) and (11)] is replaced with the following
Eqs. (14) and (15):

Yi;t ¼
�
1; if Xi;t ∈ S1 ∀ t; i

0; otherwise
ð14Þ

ReliabilityRðqÞ ¼
�XTP

t¼1

XNC

i¼1

Yi;t

��
C ð15Þ

To be in consistent with the existing conditions, we used the
historical reservoir release by following the same reservoir opera-
tion policy.

Model Description and Development

As presented in Fig. 1, the proposed model integrates an optimi-
zation module, a process-based simulation model, and an efficient
surrogate model. The optimization module uses a tailored version
of the particle swarm optimization algorithm. To improve the con-
vergence of the algorithm and preserve diversity to escape from
local optima, fitness uniform selected strategy (FUSS) is used.
In addition, as will be discussed subsequently, specific criteria were
used to update the solutions in the archive. The system is carefully
simulated using the CE-QUAL-W2 simulation model. The surro-
gate input-output (ANN) model is trained and retrained (as re-
quired) using data generated by running CE-QUAL-W2. The
physical simulation model (CE-QUAL-W2) is recalled to generate
new data if archive updating is required. The estimated values for
state variables are used to evaluate the objective function and gen-
erate new trial solutions by the optimization module.

This study uses a modified PSO algorithm to develop an opti-
mum waste load allocation under reliability constraints. In the PSO
algorithm, the state of the ith particle in search space is addressed
by its position Xi and velocity Vi in a multidimensional way. In a
D-dimensional search space, the next position of each particle is
addressed by its personal best experience (pbestðiÞ) and the global
best experience of the swarm (gbestðiÞ)

XiðtÞ ¼ Xiðt − 1Þ þ ViðtÞ ð16Þ

ViðtÞ ¼ Wt
inertia · Viðt − 1Þ þ C1 × r1ðtÞ × ðPbestði;tÞ − XiðtÞÞ

þ C2 × r2ðtÞ × ðgbestðtÞ − XðtÞÞ ð17Þ

where Xi ¼ ðxi;1; xi;2; : : : ; xi;DÞ; Vi ¼ ðvi;1; vi;2; : : : ; vi;DÞ; r1 and
r2 = uniformly distributed random numbers [0, 1]; and C1 and C2 =
tuning parameters that determine the relative weight of the cogni-
tive and social components, respectively. The gbestðiÞ and pbestðiÞ re-
present global best and personal best for particle i in the t th
iteration. The inertia weight Wt

inertia is assumed to decrease linearly
as iterations increases (Eberhart and Shi 1998)

Wt
inertia ¼ ðW1 −W2Þ ×

Mir − ir
Mir

þW2 ð18Þ

where Mir = allowed maximum number of iterations; and W1 and
W2 = maximum and minimum values of inertia weight, respectively.
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Their values are tuned to make an appropriate balance between
global and local search. This paper uses the random walk and fitness
uniform selection strategies to improve the convergence of the
algorithm and preserve diversity to escape from local optima
(Cui et al. 2008).

Simulation and Optimization Modules

To simulate a complex river-reservoir system under different load-
ing conditions a process-based water quality simulation model is
often preferred. The very large number of function evaluations
in a simulation-optimization problem may impose severe limita-
tions on the use of computationally-expensive simulation models
in a multiperiod problem. As the complexity and computational
burden of a simulation model increases, its merit may diminish
at the point at which the system’s response to different excitations
is to be estimated. The computational restrictions may be relaxed
by using more efficient optimization algorithms or by reducing the
simulation model’s running time. The former approach reduces
the number of function evaluations, while the latter approach
may concentrate on parallel computing and/or the use of surrogate
models (Emami Skardi et al. 2015). Aside from using an efficient
PSO algorithm, this study benefits from a set of ANN models
developed for different checkpoints, which significantly reduces

the computational time of the physical simulation model
(CE-QUAL-W2). Both CE-QUAL-W2 and the surrogate models
are used interchangeably for the simulation of the system in a
compromise between accuracy and computational time. The surro-
gate models are dynamically refined and filled with the newly-
generated data as regions of sparse data in the feasible policy space
are identified.

This study uses a professionally and academically appreciated
CE-QUAL-W2model to estimate the perfect response of a complex
river-reservoir system (Cole and Wells 2008; Afshar 2013; Diogo
et al. 2008; Gelda and Effler 2007). It assumes lateral homogeneity
and therefore is highly recommended for relatively long and narrow
water reservoirs with no major lateral sink or source terms. The
system’s operation rule and bathymetry data, outlet descriptions,
meteorological data, initial conditions, and time series of inflow
and water quality data form the main data requirements (Afshar
et al. 2013).

This study uses an iterative routine for resampling and re-
modeling for validation and/or optimization (Fig. 2). To enhance
model accuracy, the proposed scheme dynamically validates and
refines the surrogate models as required [Fig. 2(b)] (Wang and
Shan 2006). Afshar and Masoumi (2016) proposed and used the
following two criteria to update the archived data:

New data 
Yes

CE-QUAL-W2 
Simulation 

Model

Archive
Updating 
required? 

Archive 

Surrogate 
Input-Output 

Model

PSO
Optimization 

Module 

CE-QUAL-W2 
Simulation 

Model

State Variable (Pollutant concentration at 
checkpoints) 

Training and 
Retraining 

No 

Training 
and

Retraining 

Fig. 1. Schematic presentation of the solution methodology.

(a)

(b)

Design of 
Experiments

Meta-Model 
Building

Validate the 
surrogated model

Optimization 
on Metamodels

Design of 
Experiments

Meta-Model 
Building

Validate the 
surrogated model

Optimization 
on Metamodels

Fig. 2. Metamodel-based design optimization: (a) sequential structure; and (b) adaptive structure. (Adapted from Wang and Shan 2006.)
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if

�XNPL

i¼1

XNTS

j¼1

Zi;j

T

�
≥ α1Zi;j

¼
8<
:

1 if

�jx�i − xarchivei;j j
x�i

�
≥ β

0 otherwise

∀ i ∈ NPL; ∀ j ∈ NTS

ð19Þ

f

�XNPL

i¼1

XNTS

j¼1

�jx�i − xarchivei;j j
x�i

�
×
1

T

�
≥ α2 ∀ i ∈ NPL; ∀ j ∈ NTS

ð20Þ
where α1, α2, and β = precision measures specified by the user;
xarchivei;j = ith component of the jth archived solution; and x�i = value
of the ith component of the gbest solution, which refers to the best
pollutant load (phosphate in this study) for the ith discharger from
the beginning of the search process until the present iteration. The
gbest solution is a vector whose elements x�i address the optimum
waste load allocated to discharger i. As presented, gbest enters
Eqs. (19) and (20) by its elements x�i , as they appear in the numer-
ator and denominator of the equations.

The criteria in Eq. (19) show that the archive will be updated
when the percent of the time that the normalized value of the differ-
ence between the generated data (x�i ) and the archived data (x

archive
i;j )

is greater than the prespecified value of α1. Under the second cri-
teria [Eq. (20)], the CE-QUAL-W2 model is recalled to refine the
archived data if the average value of the difference between the
generated data and the archived data for the total number of ar-
chived solutions (NTS) exceeds the prespecified value of α2. If
these conditions are met, the physical simulation model is called
up to generate new data. The new data supplements the previous
training data for surrogate model retraining.

To select the optimum strategy for any prespecified reliability
level, we have used the fitness uniform selection strategy as intro-
duced by Cui et al. (2008). Although higher fitness receives higher
selection pressure in standard selection schemes, FUSS preserves
diversity better than they do. When using FUSS, low populated
fitness levels may effectively be favored (Cui et al. 2008). This
study uses the same concept to develop an efficient optimization
module (Afshar and Masoumi 2016).

Model Application

Case Study

To test the performance of the proposed modeling scheme in
solving a reliability-based WLRA problem, we applied it to the
Karkheh system in Iran (Iran Water and Power Development
Company 2006). The 127-m-high multipurpose Karkheh dam
has been under operation since 2001. With 5346.8 Mcm storage
at normal water level, the reservoir release is used to irrigate
180,000 hectares of land and provide drinking water for nearby
municipalities. At its normal level, surface area of the reservoir
is 162 km2 and its length is approximately 64 km. With a length
to surface area ratio of 0.4, it may be categorized as a long reservoir.
Use of laterally-averaged two-dimensional models is certainly a
good choice for this reservoir, which has multiple outlets at differ-
ent levels and historical stratification and significant depth variation
of water quality parameters. Previous studies have revealed that the
reservoir is susceptible to eutrophication, and phosphorus is the
controlling constituent (Afshar and Saadatpour 2009). The data

used in this study is mainly extracted from Afshar et al. (2012),
Saadatpour (2012), Iran Water and Power Development Company
(2006), and Afshar and Saadatpour (2009).

Model Setup

For successful application of the proposed approach, all three mod-
ules (CE_QUAL_W2, SM, and FUSS-PSO) had to be set up for
future use. In other words, the tunable parameters of FUSS-PSO
had to be identified, the simulation model had to be calibrated,
and the surrogate models had to be tuned for increased computa-
tional efficiency and minimum redundancy and noise.

The Karkheh system, including the reservoir, upstream reach,
and downstream reach, were divided into longitudinal and vertical
segments with varying dimensions (Afshar and Masoumi 2016).
Compromising between accuracy and computational cost, the
river-reservoir system was segmented to 28 longitudinal layers and
up to 18 vertical layers. The upstream (downstream) reach was sub-
divided into 14 (57) reaches with 5 (6) vertical layers (Afshar and
Massoumi 2016). This study used the same calibration parameters
reported by Afshar et al. (2013). The final calibration values for the
most important parameters may be found elsewhere (Afshar et al.
2013).

Extensive trial and error procedures and reported values for
tunable parameters were used to set up the optimization module
(PSO). The model was set up for W1 ¼ 0.9, W2 ¼ 0.4, C1 ¼
0.6, C2 ¼ 0.4, and population size of 50 with 200 iterations.

The surrogate models were structured with an appropriate num-
ber of input parameters to increase the computational efficiency and
interpretability of the model while reducing redundancy and noise
(Sindelar and Babuska 2004). The structure of the proposed ANN
surrogate model included 33 neurons and one hidden layer. For a
given source of pollutants, the response of the system was highly
dependent on the position of the checkpoints. Therefore, the re-
sponses at different checkpoints were estimated with the surrogate
models with varying input nodes (Table 1). Although only 12 and
14 input nodes were selected for checkpoints upstream and down-
stream of the reservoir, the inside of the reservoir was addressed by
43 input nodes. The input selection of the ANN model was accom-
plished by extracting a priori knowledge of the system being
modeled and intensive sensitivity analyses (Saadatpour 2012). To
identify the most important factors affecting phosphate concentra-
tion in the Karkheh reservoir’s outflow, mutual information (MI)
criteria were used. Mutual information measures provide informa-
tion about the general dependence of random variables without
making any assumptions about the nature of their underlying rela-
tionships. MI expresses the quantity of information one obtains on
x by observing y (MacKay 2003). Input training data was mostly
derived from the solution to the CE_QUAL_W2 model, which was
assumed to be a reliable representative of the actual system under
various conditions.

Table 1. Selected parameters in surrogate models

Parameter

Checkpoints

Upstream
Inside the
reservoir Downstream

Number of neurons in
the hidden layer

33 33 33

Number of hidden layers 1 1 1
ANN type Perceptron Perceptron Perceptron
Number of input nodes 12 43 14
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The surrogate models for the reservoir and upstream and down-
stream reaches received common monthly data on wind speed, air
and water temperature, concentration of water quality parameters in
the natural flow [i.e., phosphate, nitrate, ammonium, total sus-
pended solid (TSS), algae, dissolved oxygen (DO), and biochemi-
cal oxygen demand (BOD)], headwater and water diversions, and
phosphate loading from all point sources. The surrogate model for
the downstream reach received additional data on the reservoir
water level and the portion of water released from the middle outlet.

The surrogate model, which estimates reservoir water quality
responses to different excitations, was influenced by some addi-
tional parameters specific to the reservoir. For the Karkheh
reservoir, the additional data consisted of reservoir water level,
evaporation rate, the portion of the release from the upper outlet,
and upstream diversions. However, the water quality data on natu-
ral inflow upstream from the reservoir, reservoir inflow, and phos-
phate loading from point sources were considered with different
lag times ranging from 0 to 2 months. A total of seven major load
dischargers were identified along the river upstream from the
reservoir (Afshar and Masoumi 2016). This study allocated the
maximum monthly phosphorus load to each discharger, which led
to 84 decision variables.

The response of the system to different random pollutant load-
ings (initial trial solutions) was estimated with multiple runs
of the CE-QUAL-W2 simulation model. The state variables
(i.e., phosphorus concentration) at all monitored checkpoints were
determined and saved in an external archive (Fig. 1). The archived
information was used to train the surrogate model, which would
later replace the physical model in the simulation-optimization pro-
cess. This study initially archived 20 trial solutions, each address-
ing the temporal and spatial variation of phosphorus concentration
due to a given loading scenario.

The training and validation of the surrogate model was con-
ducted using 20 sets of 180 periods of data. The training of the
ANN model was tested for various sets of input data ranging from
1 to 30 randomly generated data sets. We observed that increasing
the input data sets from 20 to 30 made no major improvement in
the accuracy of the outputs. The data for the first 156 periods were
used for training, and the data for the last 24 periods was used for
validation purposes. Computer processing time for these 20 trial
solutions approached to 460 min on a 3.4 GHz Core i7-2600-CPU
computer (Afshar and Masoumi 2016). Increasing the initial size of
the archive (i.e., number of trial solutions) would certainly cause a
relative increase in the required processing time.

Statistical measures reported previously show that the proposed
surrogate model may effectively and efficiently be used to simulate
hydrodynamic and water quality behaviors of the Karkheh system.
This study used the same calibration and validation parameters and
procedures (Afshar and Masoumi 2016) for deriving reliability-
based solutions for waste load reallocation.

Discussion of the Results

In view of the long-term response of large reservoirs to input var-
iations and the inherent stochasticity of natural inflow, a single
period model based on the dries period will fail to address the re-
sponse of the system to various excitations. In a river-reservoir sys-
tem, water quality responses must be treated on a multiperiod basis
with long-term pollutant loading. Compared to daily loading in to-
tal maximum daily load (TMDL) calculations, monthly or annual
loads are often preferred in river-reservoir systems (USEPA 1999).
Realizing the stochastic nature of inflow and the temporal variation
of climatic parameters, long-term simulation of a system may be

the most reliable approach for identification of system failures
and their severity.

The Karkheh river-reservoir system was used to illustrate the
performance of the proposed reliability-based approach. To exhibit
the performance of the proposed approach and the effects of reli-
ability constraints on the system’s capacity to receive loads from
the dischargers, three different cases were considered. All cases
used the same basic data and model parameters for a 5,400-day
(180-month) simulation period. The EPA states that phosphate con-
centrations in streams discharging into lakes or reservoirs should
not exceed 0.05 mg=l. We set the same restriction on the check-
points; however, we relaxed it by 20% for those checkpoints that
might violate the general restriction in limited time steps as recom-
mended by the local experts. Although the recommendations of
local experts may have had no solid rationale, they provided insight
into the reliability-based waste load allocation.

Case I used the F2 formulation with quality reliability of 1.2
(βquality ¼ 1.2). Case II used the F2 formulation but relaxed quality
restrictions at single checkpoints (unrestricted Cj;t). Case III used
the F1 formulation with βquality ¼ 1.2. The optimal allocation strat-
egies were developed using data for 180 monthly periods with
water quality reliabilities ranging from 0.95 to 0.80. For partial
verification of the results, spatial distribution of the total maximum
monthly load for Reliability RðqÞ ¼ 1 was checked against the re-
sults of original settings, in which the system was restricted to sat-
isfy the prespecified quality constraints over the entire simulation
period at all checkpoints (Afshar and Masoumi 2016). As expected,
we obtained the same results and values for allocated waste load at
different dischargers and associated state variables.

If the restriction on minimum quality requirement (constraint
number 16) is relaxed, the system capacity may significantly ex-
ceed the original case. As presented in Table 2, for 95% reliability,
the overall capacity of the system to receive phosphorus load may
increase by 23% compared to the original case with restricted
constraints (100% reliability). In-depth observations of the results
show that checkpoints inside the reservoir are significantly more
sensitive and reveal higher quality constraint violations. The down-
stream checkpoints, as compared to the upstream ones, have a
significantly higher impact on total permissible waste loads by the
dischargers. Checkpoints inside the reservoir are significantly more
sensitive to reliability constraints and reveal higher quality con-
straint violations.

For Case I (F2 formulation, βquality ¼ 1.2), the maximum per-
missible waste load increased from 16 to 28% for reliability levels
ranging from 95 to 80%, respectively (Table 2). In this case the
rate of violation at all violated checkpoints was strictly limited to
20% of the standard value. In other words, under no circumstances
should the phosphorus concentration exceed 0.06 mg=l, as ad-
dressed by Constraint Number 16 for βquality ¼ 1.2. The reliability
level, however, was checked based on overall system performance
as averaged at all checkpoints. Although minor violations at check-
points 4, 14, and 15 were observed, the phosphorus concentration

Table 2. Increase in maximum permissible waste load allocation (%) with
reliability constraints compared to restricted reliability of 100%

Reliability
(%)

Case I Case II Case III

F2 formulation,
βquality ¼ 1.2

F2 formulation,
Unrestricted Cj;t

F1 formulation,
βquality ¼ 1.2

95 16 23 3
90 22 28 7
85 26 31 9
80 28 34 10.5
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never exceeded 0.05 mg=l, as dictated by Constraint Number 16 for
βquality ¼ 1.2. For Case III (F1 formulation, βquality ¼ 1.2), in which
the reliability level was checked for all individual checkpoints, the
maximum permissible waste load increased from 3 to 10.5% for
reliability levels ranging from 95 to 80%, respectively (Table 2).

The spatial distribution of phosphorus concentrations at differ-
ent checkpoints for Cases I, II, and III and a reliability level of
95% on a typical day in a relatively dry year is presented in Fig. 3.
As expected, more frequent and larger quality violations from the
predefined target value of 0.05 mg=l are observed for Case II com-
pared to other cases. In fact, by relaxing the restriction on the rate of
violation at violated checkpoints, the phosphorus concentration has
gone up to 0.09 mg=l at Checkpoint 15, which corresponds to an
80% violation from the target value of 0.05 mg=l. This check-
point is located at the most downstream segment of the river-
reservoir system. For Case I (F2 formulation, βquality ¼ 1.2),
although phosphorus concentration at 6 checkpoints exceeds
the target value of 0.05 mg=l, none of them violates the restric-
tion imposed by the upper bound of quality violation (βquality) as
addressed by Eq. (16). Again, most of the checkpoints with vio-
lations are located downstream from the reservoir (Checkpoints
13, 14, and 15). As expected, Case III is the most conservative,
with restricted violations and a smaller increase in total maxi-
mum permissible waste load allocation under the given reliabil-
ity. Aside from small violations of the target phosphorus
concentration at three checkpoints, the quality constraints are
fully satisfied at the remaining ones. As expected, except for
Case II, we do not see any violations of the upper bound for
quality violations for βquality ¼ 1.2.

The temporal variation of phosphorus concentrations at Check-
point 1 upstream of the reservoir for all three cases is presented in
Fig. 4. For Case I, (F2 formulation, βquality ¼ 1.2), the reliability
level was checked based on overall system performance as aver-
aged at all checkpoints; therefore, the prespecified reliability level
of 95% is not necessarily strictly satisfied for all single checkpoints.
The total number of months in which the target value of 0.05 mg=l
is not strictly satisfied is approximated as 6 out of 180 months
[Fig. 4(a)]. In other words, reliability level for this single check-
point exceeds the prespecified level of 95%. The constraint viola-
tion never exceeds the value addressed by Constraint Number 16
for βquality ¼ 1.2.

For Case II (F2 formulation, unrestricted Cj;t), the temporal dis-
tribution of phosphorus concentrations at Checkpoint 1 reveals
larger variations and violations from the upper bound of the quality
constraint as addressed by Eq. (16). However, for a reliability level

of 95%, the total number of months in which the target value of
0.05 mg=l is violated does not exceed 9 months for the entire
simulation period of 180 months [Fig. 4(b)]. The rate of quality
violations during some periods far exceeds the upper bound of
0.06 mg=l (βquality ¼ 1.2). This is clearly because we have replaced
βquality ¼ 1.2 with unrestricted Cj;t, which relaxes the restriction on
the upper bound.

For Case III (F1 formulation, βquality ¼ 1.2), there are no viola-
tions of the target quality during the entire simulation period of
180 months. Although some limited violations are permitted under
the imposed reliability constraints, the quality constraints are fully
satisfied. This can mainly be attributed to the severer quality con-
ditions at the downstream checkpoints. In addition, Eq. (16) for
βquality ¼ 1.2 is fully satisfied, with a reliability level of 100%.
In other words, although there is some unused waste-receiving
capacity at this checkpoint, its further utilization may result in con-
straint violations at checkpoints located further downstream
[Fig. 4(c)].

The monthly distribution of concentrations at the most critical
checkpoint downstream from the reservoir (Checkpoint 15) is pre-
sented in Fig. 5. For Case I, (F2 formulation, βquality ¼ 1.2), in
which the system reliability level was checked based on overall
system performance as averaged at all checkpoints, the upper
bound on the quality constraint was restricted for all checkpoints
as addressed by βquality ¼ 1.2. Therefore, the prespecified reliability
level of 95% was not strictly satisfied at all single checkpoints. This
is clearly observed at Checkpoint 15, located downstream from the
reservoir. Although the overall reliability level of 95% is satisfied
for the entire system, the total number of months in which
0.05 mg=l is not strictly satisfied at this checkpoint is approximated
at 33 out of 180 months [Fig. 5(a)]. In other words, the reliability
level for this single checkpoint is far less than the prespecified level
of 95%. Again, in none of these periods has the constraint violation
exceeded the prespecified value addressed by Constraint Number
16 for βquality ¼ 1.2.

As expected, for Case II (F2 formulation, unrestricted Cj;t), the
temporal distribution of phosphorus concentrations at checkpoint
15 reveals larger variations and violations from the upper bound
of quality constraint as addressed by Eq. (16). Although for reli-
ability level of 95%, the total number of months in which the target
value of 0.05 mg=l was violated is smaller (27 months) than that of
Case I for the entire simulation period of 180 months, the rate of
quality violations during some periods far exceeded the upper
bound of 0.06 mg=l for βquality ¼ 1.2 [Fig. 5(b)]. This is clearly
because we have replaced βquality ¼ 1.2 with unrestricted Cj;t,
which relaxes the restriction on the upper bound.

For Case III (F1 formulation, βquality ¼ 1.2), in which the
reliability level was checked for all individual checkpoints, no vio-
lations from the upper bound of the quality constraint for βquality ¼
1.2 (0.06 mg=l) were observed. In other words, Eq. (16) for
βquality ¼ 1.2 was fully satisfied, with a reliability level of
100%. As expected, there were only 9 months in which the target
value of phosphorus concentration (i.e., 0.05 mg=l) was violated.
For the remaining 171 periods, the phosphorus concentration re-
mained below the target value of 0.05 mg=l [Fig. 5(c)]. This led
to the prespecified reliability level of 95%. Case III is the most
conservative and restricted reliability-based waste load reallocation
to the river-reservoir system.

Checkpoints inside the reservoir behave differently in compari-
son to those upstream and/or downstream of the reservoir. For all
three cases, most of the violations from target constraints were con-
centrated in the second half of the simulation period (Fig. 6). The
gradual accumulation of phosphorus inside the reservoir seems to
play a key role in this observation. Due to the large storage volume

Fig. 3. Phosphorus concentration at different checkpoints on a critical
day in a relatively dry year for a reliability level of 95%.
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of the reservoir and the low initial phosphorus concentration within
the reservoir, it took a few years before the phosphorus concentra-
tion reached a stable condition. Regardless of this general trend, in
Case III, the total months with violations of the target phosphorus
concentration did not exceed the limiting value of 9 months, lead-
ing to 95% reliability [Fig. 6(c)]. However, the behavior of Cases I
and II was like the behavior discussed for Checkpoints 1 and 15.
For Case I, the rate of quality violations was strictly restricted by
0.06 mg=l for βquality ¼ 1.2 [Fig. 6(a)]. For Case II, the upper
bound of the quality constraint was frequently violated because
we relaxed the constraint by accepting unrestricted Cj;t [Fig. 6(b)].

Conclusion

Due to the inherent stochasticity of natural inflow and the long re-
sponse time of large reservoirs to waste loads, a multiperiod model
was used to address the response of a system to various excitations.
The problem was formulated as a reliability-based multiperiod
optimization problem. It was shown that adaptive use of the
dynamically-refined surrogate model may extremely reduce the
computational time required by physical simulation models in
the simulation-optimization process.

To exhibit the performance of the proposed approach and the
effects of reliability constraints on a system’s capacity to receive

(a)

(b)

(c)

Fig. 4. Temporal variation of phosphorus concentrations at Checkpoint 1 for Cases (a) I; (b) II; and (c) III.
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loads from the dischargers, three different formulations were con-
sidered. The F1 formulation flagged quality constraint violations
when they were observed in one (or more) checkpoints. In the
F2 formulation, however, the reliability level was checked based

on overall system performance as averaged at all checkpoints. In
brief, for a 95% reliability level, the overall system capacity to re-
ceive phosphorus load for the F2 and F1 formulations increased by
16 and 3%, respectively. When the maximum rate of quality

(a)

(b)

(c)

Fig. 5. Phosphorus concentration at Checkpoint 15 for Cases (a) I; (b) II; and (c) III.
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violations on individual checkpoints was relaxed, the maximum
permissible load increased to 23% for the same overall reliability
level. The increase in maximum permissible load was significantly
higher for lower reliability levels. A tradeoff between the maximum
load and the desired reliability level may help authorities develop
long-term strategies.

The results show that checkpoints inside the reservoir are sig-
nificantly more sensitive to reliability constraints and reveal higher
quality constraint violations. The downstream checkpoints, com-
pared to the upstream ones, had a significantly higher impact on
total permissible waste loads by the dischargers. For checkpoints
inside the reservoir, most of the violations from the target con-
straint were concentrated in the second half of the simulation

period. The gradual accumulation of phosphorus inside the reser-
voir seems to play a key role in this observation. We believe
that the large storage volume of the reservoir and the low initial
phosphorus concentration within the reservoir played a key role in
this observation. In fact, it took few years before phosphorus con-
centrations reached to a stable condition. We conclude that author-
ities may wish to partially relax quality constraints at some
checkpoints during the entire management period for higher waste
load allocation permits. Accounting for multiple pollutants and
sustainability measures may improve the model’s academic and
professional benefits. The value of coupling this model with a
watershed simulation model to include nonpoint sources may also
be explored.

(a)

(b)

(c)

Fig. 6. Phosphorus concentrations at checkpoint 4 inside the reservoir for Cases (a) I; (b) II; and (c) III.
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