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ABSTRACT

Hydrologic and geomorphic classifications have
gained traction in response to the increasing need for
basin-wide water resources management. Regardless
of the selected classification scheme, an open scientific
challenge is how to extend information from limited
field sites to classify tens of thousands to millions of
channel reaches across a basin. To address this spatial
scaling challenge, this study leverages machine learn-
ing to predict reach-scale geomorphic channel types
using publicly available geospatial data. A bottom-
up machine learning approach selects the most accu-
rate and stable model among ∼20,000 combinations of
287 coarse geospatial predictors, preprocessing meth-
ods and algorithms in a three-tiered framework to: (i)
define a tractable problem and reduce predictor noise;
(ii) assess model performance in statistical learning;
and (iii) assess model performance in prediction. This
study also addresses key issues related to the design,
interpretation and diagnosis of machine learning mod-
els in hydrologic sciences. In an application to the
Sacramento River basin (California, USA), the de-
veloped framework selects a Random Forest model
to predict 10 channel types previously determined
from 290 field surveys over 108,943 two hundred-meter
reaches. Performance in statistical learning is reason-
able with a 61% median cross-validation accuracy – a
sixfold increase over the 10% accuracy of the baseline
random model, and the predictions coherently capture
the large-scale geomorphic organization of the land-
scape. Interestingly, in the study area, the persistent
roughness of the topography partially controls channel
types and the variation in the entropy-based predic-
tive performance is explained by imperfect training
information and scale mismatch between labels and
predictors.

I. INTRODUCTION

Classification is commonly used to characterize and
interpret natural systems. In fluvial geomorphology,
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the observed geometry and behavior of a river charac-
terize the distinct set of physical processes shaping a
stream. This form-process paradigm [1] gave rise to a
variety of reach-scale geomorphic classifications [e.g.,
2, 3]. With increasing collaborations between scien-
tists and stakeholders, basin-wide hierarchical clas-
sifications such as the River Styles framework have
gained traction [e.g., 4–9]. Such classifications usually
rely on field-based observations of valley confinement
[10], channel geometry (e.g., width and sinuosity) and
instream features (e.g., bar and pool). These mainly
descriptive classifications have a fuzzy correspondence
[11], suggesting that automation and standardization
of reach-scale classification may not only be possible
but beneficial [12, 13]. To that end, reproducible,
physically interpretable river characterization within a
GIS framework represents an important step-forward
[e.g., 14–18].

Regardless of the classification scheme selected, an
open scientific challenge is how to extend a field-
based classification generated from a limited number
of study sites to the regional scale over tens of thou-
sands to millions of channel reaches to support re-
gional water management efforts. Given the strong
relationship between upstream catchment properties
accessible through public geospatial data sets [e.g.,
19] and streamflow response, extrapolating hydro-
logic classes to the stream network is well-established
[e.g., 20]. By contrast, reach-scale geomorphic chan-
nel types depend more on local geology and confine-
ment. Information related to these attributes is rarely
available at sufficient resolution over entire regions to
accurately extrapolate classes to a stream network.
O’Brien et al. [7] relied on a rich geospatial data set
including extensive remote sensing and field mapping
to extrapolate channel types in a 2,050 km2 catch-
ment. Although it is possible to predict channel types
using only information in available regional databases,
reach-scale attributes in such databases often have sig-
nificantly different values than those observed in the
field [e.g., 21] so direct prediction of channel types
without mindful consideration of data scaling prob-
lems will likely yield poor results. Machine learning
(ML) offers an opportunity to perform such a scaling
translation by exploring the potentially sophisticated
linkages between coarse-scale geospatial information
publicly available at the regional scale and field-based
geomorphic surveys.

ML refers to models that improve performance dur-
ing execution [e.g., 22]. ML models are data driven,
scalable, and exhibit high-performance in classifica-
tion tasks while identifying significant driving vari-
ables. Despite evidenced successes with ML in other
fields, environmental sciences have been slower to
adopt these statistical techniques and combine them
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with process-based deterministic approaches. For
example, recent reviews underline a limited use of
the latest developments of ML in hydrologic sciences
[23, 24], a slower adoption in geophysics [25], and
emerging applications in Earth System Science [26].
However, with increasing volume of data, ease-of-
access to computing resources and availability of ML
toolboxes, this situation is rapidly evolving. In geo-
morphology in particular, novel ML applications in-
clude delineating landforms [27], predicting geomor-
phic disturbance [28] or dune erosion [29], mapping
susceptibility to landslide and gully erosion [30–32],
inferring ecohydrological parameters [33], analyzing
model residuals [34], clustering river profiles [35],
classifying and predicting sediment-discharge relation-
ships [36, 37], and assessing stream diversity with
large-scale top-down approaches [38, 39]. In the face
of such rising popularity, the interpretability and as-
sessment of uncertainty in ML models remain key is-
sues [e.g., 26].
In this study, we develop a multitiered ML

framework to extrapolate a geomorphic classification
scheme to a regional stream network, assess model
performance, and inform additional data collection.
This framework is applied to the Sacramento River
basin in California (USA) to predict the channel type
for 108,943 two hundred-meter long stream intervals.
The three tiers of the proposed ML framework (i) de-
fine a tractable problem from 290 field surveys and 287
predictors; (ii) assess the performance of ∼ 20,000 ML
models in statistical learning; and (iii) assess the per-
formance of ∼ 20,000 ML models in predictive mod-
eling. In consequence, this study also adds to the
growing body of literature describing approaches to
better design, interpret and diagnose ML models in
hydrological sciences [e.g., 40–43].
The paper is organized as follows: Section 2

presents the study area; section 3 describes the pro-
posed three-tier ML framework used to predict the
channel forms; and sections 4 and 5 present our re-
sults and discuss their implications.

II. CASE STUDY

Spanning 70,130 km2, the Sacramento River basin
in California (USA) exhibits diverse physiography and
hydrology [44]. Flowing southward from its headwa-
ters, the river crosses the Central Valley of Califor-
nia before reaching the Sacramento-San Joaquin river
delta and Pacific Ocean through San Francisco Bay.
The western and eastern portions of the basin drain
the Coastal Range and the Sierra Nevada mountains,
respectively. The northern portion transitions from
Coastal Range to the southern end of the Cascade
Range to the volcanic Modoc Plateau. The climate
is Mediterranean with cool wet winters and warm dry
summers. Nonetheless, varying precipitation intensity
and seasonality yield differences in flow regimes across
the basin and more generally across the state [20].
Byrne et al. [45] previously identified 10 dominant

geomorphic channel types present in the Sacramento
River basin from data acquired at 290 field sites (Ta-

ble I). Channel types were statistically derived based
on multivariate clustering and comparison to field ob-
servations to achieve a best fit to all field surveyed
sites. Canals and ditches were excluded from Byrne
et al’s. (2019) analysis and, while some field sites exist
in areas with human influence, channel types are not
defined by anthropogenic alteration. The evidenced
natural variability of rivers in the study basin [45, 46]
makes it an ideal test bed for testing large-scale ge-
omorphic classification needed for future integrative
research [e.g., 47, 48].

III. A MULTITIERED ML FRAMEWORK

In the cognition process defining ML, model param-
eters are internally optimized against some perfor-
mance metrics and the model trains and self-improves.
Hyperparameters set prior to training define the ar-
chitecture of the model and tuning is used to select
hyperparameters leading to best performance. For a
polynomial model, the order of the polynomial is the
hyperparameter, its coefficients are parameters opti-
mized by minimizing the sum of the squared residu-
als, and tuning identifies the order yielding the highest
performance. Importantly, what separates ML from a
curve fitting exercise is ML’s ability to generalize pat-
terns. Such generalization is achieved by resampling
the initial data set into a training set and a test set
such that the robustness of the learned pattern can be
assessed against data unseen during training.

Learning tasks are usually separated into unsuper-
vised and supervised ML approaches [e.g., 49]. Both
approaches use input data, predictor variables (hence-
forth predictors) to extract or predict some informa-
tion about a data set. Unsupervised learning identi-
fies patterns in input data and uses these patterns to
cluster observations. Supervised learning uses known
information to approximate the relationship between
input and output data which can then be used to
predict output given new input. When the distri-
bution of such output is continuous, the supervised
learning task is a regression problem. When the out-
put distribution is discrete, it corresponds to labels,
observations of a set of classes, and the supervised
learning task is a classification problem. For a regres-
sion problem, the learned relationship between output
and input corresponds to a mathematical mapping.
For a classification problem, what is learned pertains
to class boundaries, divisions of the multidimensional
predictor space separating subsets where observations
of a given class are dominantly located.

This study aims to predict channel types for 108,943
two hundred-meter long stream intervals throughout
the stream network. As 10 possible channel types
have been previously identified [45], a supervised ML
classification approach answers the following question:
Given a set of predictors, which class (channel type)
should be assigned to each stream reach? To achieve
this study aim, we developed a three-tiered ML frame-
work (Figure 1) to: (i) define a tractable problem and
reduce predictor noise, (ii) assess the performance of
models in statistical learning, and (iii) assess the per-



3

Channel type Name Number of observations Prevalence
1 unconfined, boulder-bedrock, bed undulating 6 0.02
2 confined, boulder, high-gradient, step-pool/cascade 27 0.09
3 confined, boulder-bedrock, uniform 36 0.12
4 confined, boulder-bedrock, low-gradient step-pool 33 0.11
5 confined, gravel-cobble, uniform 43 0.15
6 partly-confined, low width-to-depth, gravel-cobble, riffle-pool 45 0.16
7 partly-confined, cobble-boulder, uniform 33 0.11
8 partly-confined, high width-to-depth, gravel-cobble, riffle-pool 24 0.08
9 unconfined, low width-to-depth, gravel 27 0.09
10 unconfined, gravel-cobble, riffle-pool 16 0.06

Table I: Channel Types Identified in the Sacramento Basin by Byrne et al. [45].

formance of models in predictive modeling.

A. Define a Tractable Problem and Reduce
Predictor Noise

Our ML approach derives the relationship between
classes corresponding to 10 channel types from Byrne
et al. [45] and 287 predictors (Table II). Several cat-
egories of predictors with a documented influence on
landscape and channel morphology were considered:
(a) channel confinement [e.g., 10]; (b) stream net-
work topology [e.g., 50, 51]; (c) statistical roughness
or fractal dimension of the topography [52–59]; (d)
contextual variables like geology, soils, land cover and
climate [e.g., 60, 61]; and (e) nine Terrain Analy-
sis Metrics (e.g. curvature, 2, 62, 63). Since the
distribution of Terrain Analysis Metrics across the
landscape differentiates stages of landscape maturity
[64] and channel types [46], six Distribution Met-
rics were estimated: mean, median, minimum, maxi-
mum, standard-deviation and skewness. Most predic-
tors were derived from three core data sets: (i) the
10-m National Elevation Dataset [65, NED]; (ii) the
stream network from the National Hydrology Dataset
[66, NHDPlusV2]; and (iii) the Stream-Catchment
Dataset [StreamCat; 19] which aggregates previous
data sources.
The essence of the problem addressed here is the

prediction of channel types, derived from data at the
100 to 102 m scale, by predictors available at coarser
spatial scales ranging from 102 to 105 m (Table II).
In addition, defining the relevant scales to distinguish
controlling physical processes is often difficult [e.g.,
67]. To address this challenge, we considered 32 sets of
five nested spatial scales with upper scales from ∼0.6
km to ∼82 km when calculating the fractal dimen-
sion following the box-counting method from Liucci
and Melelli [58]. This can be seen as an alternative
to using multiscale topographic decomposition [e.g.,
68–71]. In addition, the Terrain Analysis Metrics and
Distribution Metrics were estimated over two spatial
coverages to represent hillslope and near-channel pro-
cesses: a 512-m square tile centered at the midpoint
of each stream-interval and along a 100-m wide near-
channel buffer, respectively. These two spatial cov-
erages, combined with nine Terrain Analysis Metrics
(TAM) and six Distribution Metrics result in 108 Ter-
rain Analysis Metrics-Distribution Metrics predictors
(Table II).

Although ML approaches can incorporate a large
number of predictors and labels, irrelevant or noisy
data may deteriorate model performance and increase
computational load. Because each channel type was
expertly inspected in the unsupervised learning phase
by Byrne et al. [45], the labels are treated as noiseless
and we refrained from implementing techniques that
evaluate and correct for uncertain labeling [e.g., 72–
75]. To filter potential predictor noise, the complexity
of the problem was assessed by calculating data com-
plexity measures (DCM; 76). DCMs offer a model
agnostic tool [76–78] to inform on the linearity of the
task, the complexity of the class boundaries, and the
underlying structure of the observations within the
predictor space [e.g., 75]. DCMs were computed to
evaluate the dimensionality of the predictor space, its
complexity with neighborhood and network metrics,
the discriminative power of predictors and the linear-
ity of the task across four predictor spaces: the initial
set of predictors and when removing the fractal dimen-
sion predictors, the stream network topology metrics
and the contextual variables. While we provide a ref-
erence table for the DCMs with their name, acronym
and use, the full definitions can be found in Lorena
et al. [76] (Table III).

B. Assess Performance in Statistical Learning

1. Statistical Learning

While numerous ML models exist, the best model
for a given task is often unknown at the start [89],
leading to the common practice of training multiple
models on the same task. Here we define a ML model
as the combination of algorithm, preprocessing, pre-
dictors, oversampling and resampling. We describe
these model components in the following.

Twelve different ML algorithms were trained, in-
cluding prominent algorithms like support vector ma-
chine (SVM), random forest (RF) and artificial neu-
ral network (ANN) as well as partial least squares,
multivariate adaptive regression splines, flexible dis-
criminant analysis, k-nearest neighbors, classification
and regression tree, bagged-trees, linear discriminant
analysis, regularized linear discriminant analysis and
naive bayes. Three key algorithms, SVM, RF and
ANN, are described below. Implementation of these
algorithms was performed using the R packages caret
[90, 91] and h2o [92].
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Figure 1: Schematic of the three-tiered machine-learning framework.

Predictors group Predictor name Spatial scale Original data Methodology
TAM-DM (108) Elevation 512 m; 100-m buffer Gesch et al. [65] [79]

Slope 512 m; 100-m buffer Gesch et al. [65] [79]
Aspect 512 m; 100-m buffer Gesch et al. [65] [79]
Roughness 512 m; 100-m buffer Gesch et al. [65] [79]
Flow direction 512 m; 100-m buffer Gesch et al. [65] [79]
Planform curvature 512 m; 100-m buffer Gesch et al. [65] [80]
Profile curvature 512 m; 100-m buffer Gesch et al. [65] [80]
Topographic position index 512 m; 100-m buffer Gesch et al. [65] [79]
Terrain ruggedness index 512 m; 100-m buffer Gesch et al. [65] [79]

GIS-metrics (3) Channel slope 200 m Gesch et al. [65] [81]
Confinement - Gesch et al. [65] [45]
Sediment supply - [82] Renard et al. [83]

Network topology (4) Drainage area - McKay et al. [66] [19]
Strahler’s stream order - McKay et al. [66] [50]
Local drainage density - McKay et al. [66] [51]

Fractal dimension (32) Hurst coefficients 640 m to 82 km Gesch et al. [65] [58]
Contextual predictors (140) Lithology >1 km [84] Hill et al. [19]

Soil characteristics 1 km [85] Hill et al. [19]
Land cover 30-m initial resolution [86] Hill et al. [19]
1981-2010 climatologies 800-m initial resolution [87] Hill et al. [19]
Indices of Catchment Integrity - [88] Hill et al. [19]

TAM-DM : Terrain Analysis Metrics - Distribution Metrics

Table II: Predictors Used in the Machine Learning Framework. The 10-m National Elevation Data Set [65,
NED] and the Stream-Catchment Data Set [StreamCat; 19] are publicly available on download platform from
the United States Geological Survey and the United States Environmental Protection Agency, respectively. The
stream network from the National Hydrology Data Set [66, NHDPlusV2] is publicly available on both platforms.
TAM-DM: Terrain Analysis Metrics-Distribution Metrics

Linear SVM finds the linear boundary between two
distinct classes by maximizing the margin between the
class boundary and each class’s closest point(s) [93].
Those points are the support vectors for the bound-
ary. Nonlinear boundaries are obtained by a nonlinear
kernel version of SVM, transforming predictor space
so that the problem becomes linearly solvable. The
most common kernel used to perform this so-called
kernel trick is the radial basis function. SVMs solve
multiclass problems by transforming them into a set
of two-class problems for which multiple binarization
strategies exist [e.g., 94].

RF is an ensemble of classification and regression
trees built from random subsets of predictors [95]. At
each split of each tree, a predictor is chosen as split-
ting variable based on an information selection pro-

cess (e.g. Gini coefficient) which ultimately provides
a measure of variable importance. In addition, the en-
semble decision process from uncorrelated (random)
trees leads to great performance when the training
data set is reduced, noisy or both [96].

ANN is formed by successive layers of connected
neurons each characterized by a weight and an acti-
vation. The weight describes the strength of the con-
nection of the neuron to neurons in the next layer.
The activation results from the combination, through
an activation function, of the inputs that a neuron
receives from the previous layer. The first and last
layers of such networks correspond to input and out-
put while middle layers are termed hidden. A network
with a large number of hidden layers is called a deep
ANN with rapidly emerging applications in environ-



5

mental sciences [23, 25, 26].
Prior to statistical learning, a set of transformations

was applied to predictors (Table IV). Such preprocess-
ing includes estimating missing values with k-nearest
neighbors imputation, removing predictors with near-
zero variance and applying centering, scaling and Box-
Cox transformations to collapse each predictors distri-
bution to a normal distribution – an assumption be-
hind numerous models [e.g., 97]. In addition, we also
tested the influence of removing correlated predictors,
applying principal component analysis, and applying
independent component analysis.
To test the influence of predictors, oversampling,

and resampling, seven different runs were performed
(Table V). First, statistical learning was attempted
both with and without contextual predictors. Sec-
ond, the classes in this study suffer from the com-
mon ML challenge of unequal representation (Table
I). In a base run, this data set imbalance was left un-
touched. The Synthetic Minority Oversampling Tech-
nique (SMOTE, 98) assigns predictors along the edges
connecting the five-nearest neighbors from randomly
selected observations and was used in SMOTE runs
to address the imbalance of the training set. Third,
because of the limited number of observations, resam-
pling was performed by 20 repeats of 10-fold cross-
validation, allowing all data to be used in both train-
ing and testing [99]. The data are randomly separated
into 10 parts or folds and one fold is successively held
out to assess model performance while the other nine
folds are used for training. Repeated cross-validation
addresses the potential bias introduced by the initial
random selection of the folds. Spatial cross-validation
ensures that resampling folds are spatially disjointed
[100] and addresses the important issue of spatially
correlated training data.

For each model (Table IV) and for each run (Ta-
ble V), the set of best hyperparameters was tuned by
a grid search across 20 different values per parame-
ter resulting in the training of ∼ 20,000 models over
200 folds corresponding to four million realizations of
the learning process. As the hyperparameter search
space is larger for ANN, 20-hr discrete random search
was performed before passing the resulting hyperpa-
rameters to the resampling scheme to improve compu-
tational efficiency. For all models, the one-standard-
error rule was applied, selecting the simplest hyper-
parameters within one-standard-deviation of the most
accurate hyperparameters [e.g., 95].

2. Model Performance Assessment

Model performance in statistical training is often
reported as median cross-validation accuracy over re-
sampling realizations. Accuracy corresponds to the
ratio of accurately predicted classes to the total num-
ber of classes. The models exhibiting the highest me-
dian cross-validation accuracy were selected for cali-
bration. A paired t test between the distribution of
cross-validation accuracies from the best model and
other models was performed to assess their similarity.
These additional models are also reported.

ML models output posterior probabilities that of-
ten require calibration. Such calibration corrects
the potential distortion of the posterior probabilities
when compared to empirical probabilities and im-
proves model performance [101–103]. Given the sig-
moid shape of most distortions, Platt [104] proposed a
sigmoid calibration to address this effect. Other use-
ful approaches include Bayesian calibration and iso-
tonic scaling [105] which both require binarizing the
problem [106–112]. In this study, posterior calibra-
tion was performed using a multinomial regression, a
straightforward extension of the binomial case corre-
sponding to the logistic Platt’s scaling [104]. The R
package glmnet was used to fit a generalized linear
model with an elastic net penalty and with a 10-fold
cross-validation.

C. Assess Performance in Predictive Modeling

In probabilistic predictive modeling such as weather
forecasting, prediction skill measures the difference
between a predicted value and a reference forecast
[113]. If a reference forecast is unavailable, as in the
current study, one strategy is to estimate the entropy
H associated with the predicted posterior probabili-
ties pi:

H = −
∑

i

pi log pi (1)

Increasing entropy corresponds to increasing unpre-
dictability [114] and prognosticates the prediction skill
of a model [115, 116]. In addition, the entropy rate
H(χ) defines (to the limit) how entropy varies in a
Markovian sequence of prediction and how predictable
the sequence is. Comparing the entropy associated
with the outputs from different models is equivalent
to comparing the log-likelihood of these models [117]
and indicates which model provides the best informa-
tion [40].

In this study, the predictive performance of the se-
lected most accurate ML models was quantitatively
assessed using entropy rate and stream interval en-
tropy. First, at the network scale, the stability of
the predictions was derived by computing the entropy
rate from the transition probabilities between channel
types. Interestingly, such an estimate of model per-
formance uses only the prediction of the most proba-
ble channel type at each stream interval and addresses
the issue that ML models may exhibit different shapes
for their posterior probability distributions even after
posterior calibration. While such a model-agnostic
approach is relevant because of the hierarchical struc-
ture inherent to morphological units (e.g., pool, riffle
and cascade) and channel types [e.g., 118, 119], sim-
ilar reasoning can be applied for point pattern using
spatial statistics (A).

Second, stream interval entropy was derived from
the posterior probabilities of the model with the high-
est median-cross validation accuracy and the lowest
entropy rate. This entropy measure represents the
stability of the predictions at the stream interval scale
and may be model-dependent. It is maximized when
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Category Acronym Name Information
Dimensionality T2 Average number of points per dimension Sparsity of the dataset

T3 Average number of points per PCA dimension Sparsity of the dataset after PCA
T4 Ratio of the PCA dimension to the original dimension Proportion of relevant predictors

Linearity L1 Sum of the error distance to the SVM hyperplane Linear separability
L2 Error rate of the SVM classifier Linear separability
L3 Non-linearity of SVM classifier Linearity of boundaries

Neighborhood LSC Local set average cardinality Width of boundaries
N1 Fraction of borderline points Complexity of boundaries
N2 Ratio of inter-/extra-class NN distance Distance-based separability
N3 Error rate of the NN classifier Distance-based complexity

Network ClsCoef Clustering coefficient Grouping tendency of observations
Density Density Connectedness of observations

Overlapping F1 Fisher’s discriminant ratio Predictor discriminative power
F2 Volume of overlapping region Predictor discriminative power
F3 Maximal individual predictor efficiency Predictor discriminative power
F4 Collective predictor efficiency Predictor discriminative power

PCA: principal component analysis
SVM: support vector machine
NN: nearest-neighbor

Table III: DCMs computed to characterize the problem complexity and to filter predictor noise. We follow
definitions from Lorena et al. [76].

Model name Centering, scaling
k-NN imputation PCA ICA Removing highly

Box-Cox transformations correlated predictors
PLS Corr 3 3 7 7 3

PLS PCA Corr 3 3 3 7 3

SVM Linear 3 3 7 7 7

SVM Linear Corr 3 3 7 7 3

SVM Linear PCA Corr 3 3 3 7 3

SVM Radial 3 3 7 7 7

SVM Radial Corr 3 3 7 7 3

SVM Radial PCA Corr 3 3 3 7 3

MARS 3 3 7 7 7

FDA 3 3 7 7 7

k-NN 3 3 7 7 7

k-NN Corr 3 3 7 7 3

k-NN PCA Corr 3 3 3 7 3

CART 3 3 7 7 7

CART Corr 3 3 7 7 3

CART PCA Corr 3 3 3 7 3

BaT 3 3 7 7 7

BaT Corr 3 3 7 7 3

RF 3 3 7 7 7

LDA 3 3 7 7 7

RLDA 3 3 7 7 7

NB 3 3 7 7 7

NB ICA 3 3 7 3 7

ANN 3 3 7 7 7

PCA: principal component analysis; ICA: independent component analysis;
PLS: partial least squares; SVM: support vector machine;
MARS: multivariate adaptive regression splines; FDA: flexible discriminant analysis;
k-NN: k-nearest neighbors; CART: classification and regression tree;
BaT: bagged-trees; RF: random forest; LDA: linear discriminant analysis;
RLDA: regularized linear discriminant analysis; NB: naive bayes; ANN: artificial neural network

Table IV: Types of Preprocessing.

Run Predictors Oversampling Resampling
base-a All no 20 x 10-fold cross-validation
base-b No contextual predictors no 20 x 10-fold cross-validation
SpCv-b No contextual predictors no 20 x 10-fold Spatial Cross-Validation
SMOTE-a all SMOTE 20 x 10-fold cross-validation
SMOTE-b No contextual predictors SMOTE 20 x 10-fold cross-validation
SpCV-SMOTE-a All SMOTE 20 x 10-fold Spatial Cross-Validation
SpCV-SMOTE-b No contextual predictors SMOTE 20 x 10-fold Spatial Cross-Validation

Table V: Type of Runs Performed to Evaluate the Influence of Predictors, Oversampling and Resampling.
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all channel types are equally probable for a given
stream interval. Stream-interval entropy was used to
assess the spatial structure of model uncertainty and
its correlation with predictors.
The map of predicted channel types was investi-

gated using expert-knowledge, with a focus on the
general spatial organization of channel types across
the study area as well as their geomorphic relevance.
Aerial imagery was used to qualitatively confirm pre-
dictions at selected sample locations. Finally, the
variable importance of predictors was investigated to
support geomorphic interpretability of model predic-
tions.

IV. RESULTS

Key results from the three-tier ML framework are
presented below. In particular: (i) removing coarse-
scale contextual predictors leads to a simpler classi-
fication problem, (ii) RF outperforms other models,
(iii) prediction skill varies across the study area, and
(iv) RF predictions capture the large-scale organiza-
tion of the landscape.

A. Removing Coarse-scale Contextual
Predictors Leads to a Simpler Classification

Problem

DCMs characterize the classification problem (Fig-
ure 2a) and underline that its complexity decreases
when removing contextual predictors and increases
when removing topology or fractal dimension predic-
tors (Figure 2b). In the following, the results from di-
mensionality, neighborhood, network, discriminative
power and linearity DCMs are detailed.

Dimensionality DCMs underline a sparse predictor
space (Figure 2a). As a consequence, removing pre-
dictors mechanically makes the problem simpler by in-
creasing the number of observations per original (T2)
or PCA dimensions (T3). Nonetheless, removing frac-
tal dimension predictors increases the complexity of
the relationship between predictors (T4, Figure 2b).

High neighborhood and network DCMs indicate a
complex distribution of the classes observations in the
predictor space (Figure 2a). The class boundaries
appear narrow (LSC), complex (N1), with possibly
overlapping classes (N1, N2) and highly disconnected
observations with little clustering (Density, ClsCoef).
Such a complex predictor space leads to a high er-
ror rate for the distance-based nearest-neighbor model
(N3).

Despite the overall complexity of the predictor
space, the discriminative power of some predictors
makes the problem workable (Figure 2a). Similar
to neighborhood and network DCMs, the mean dis-
criminative power of predictors (F1) indicates a com-
plex problem. However, the volume of overlapping
region (F2) and the maximum individual predictor ef-
ficiency (F3) suggests that complete class separability
is achievable. Importantly, the iterative use of high
efficiency predictors to separate classes measures the

collective efficiency of predictors (F4) and leads to a
tractable problem. This result contrasts with neigh-
borhood DCMs which take into account the relation-
ship of observations in the entire predictor space and
implies predictor noise in the four predictor spaces
considered. Furthermore, removing topology predic-
tors leads to the most complex problem underlining
that at least one of these predictors is prominent at
separating classes (F3, F4, Figure 2b). The maximum
individual predictor efficiency (F3) was computed for
each pair of classes in the study area (Figure 3). Such
an account of class separability underlines that the
unconfined channel types 1, 9, and 10 are the most
easily discriminated from other channel types (Table
I). In contrast, the confined or partly-confined channel
types 2–8 appear more complex to separate.

Similar to overlapping DCMs, linearity DCMs in-
dicate a tractable problem. The error distance of
observations to the SVM hyperplane (L1), the error
rate of the SVM (L2) and its nonlinearity (L3) are
all negligible. While these measures show that it is
possible to find a linear hyperplane to separate all
classes. Nonetheless, the underlying calculation of the
SVM does not assess overfitting by cross-validation
and is specific to the internal calculation of the DCMs.
Importantly, this SVM model is distinct from SVM
models included in the ML models benchmark dur-
ing which ability to generalize is properly assessed by
resampling.

B. Random Forest Outperforms Other Models

Seven different model runs were performed to as-
sess the influence of predictors, oversampling, and re-
sampling (Table VI). The removal of the contextual
predictors leaves prediction accuracy unchanged. In
contrast, balancing the channel types with SMOTE
significantly improves prediction accuracy and using
spatial cross-validation leads to decreased accuracy
for all runs indicating some degree of spatial corre-
lation in the data. In a multiclass problem with an
expected significant spatial variability, ensuring that
each fold contains examples of all channel types is
complex. For 15 of the 20 spatial cross-validation re-
peats, 10 out of 10 folds contain examples of all chan-
nel types; one repeat has two folds with missing obser-
vations for one channel type, three repeats have four
problematic folds and one repeat has six. Because ad-
dressing spatial correlation is more conservative than
a minor loss in fold stratification, for the remainder
of the paper, we only consider the run using spatial
cross-validation, SMOTE, and without coarse contex-
tual predictors (SpCV-SMOTE-b, Table VI).

From the statistical learning step of our three-tier
framework, three models emerge as the most accurate
for the Sacramento basin: L-SVM, R-SVM and RF
(Figure 4). The 61% median cross-validation of these
models represents a sixfold increase over the 10% ac-
curacy of the baseline random model. L-SVM had
the lowest computational cost (<1 minute), while R-
SVM and RF were the most costly (>2 hours). Good
performance of these models were expected from the
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DCMs analysis as they likely benefit from the collec-
tive efficiency of predictors and from the linearity of
the problem (F4, L1, Figure 2a). Such evidenced lin-
earity leads us to limit further analysis to the simpler
L-SVM model.
Comparing the entropy rate associated with the

predictions from RF and L-SVM identifies RF as the
most accurate and stable model. The entropy rate is
derived from the transition probabilities of the predic-

tions and is lower for RF (H(χ) = 1.35) than L-SVM
(H(χ) = 1.83). While the transition probabilities are
later described in detail to assess model predictive
performance, their more organized representation pro-
vides compelling visual evidence of the higher stabil-
ity of RF predictions (Figure 5). In addition, the best
number of predictors tried at each split (RF hyperpa-
rameter) is 17; compared to the number of predictors,
this value is low enough so that the trees of the forest
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Run Max median x-val accuracy Best model(s)
base-a 0.39 MARS, FDA
base-b 0.38 MARS, FDA, RF
SpCv-b 0.34 MARS, FDA, CART, (RFa)
SMOTE-a 0.70 R-SVM
SMOTE-b 0.70 R-SVM
SpCV-SMOTE-a 0.60 L-SVM, R-SVM
SpCV-SMOTE-bb 0.61 L-SVM, RF, R-SVM
a: RF achieved a high accuracy but was not considered statistically similar to MARS
b: Run selected

Table VI: Results From the Different Runs Performed (Table V). The maximum value for the median cross-
validation is reported for each run as well as the best classifier(s). If more than one classifier is reported, the
distributions of the cross-validation of these classifiers are indistinguishable from a statistical point of view.

are not significantly correlated, making the decision
process of the ensemble model more stable [120]. In
contrast, the best value of the cost parameter of the
LSVM is C = 0.25, meaning that the accuracy of the
L-SVM comes at the cost of some underfitting which
translates into poorer predictions for data unseen in
training as the class boundaries may not be well con-
strained (Figure 2).

C. Prediction Skill Differs Within Study Area

Stream-interval posterior entropy provides a quanti-
tative assessment of uncertainty in model predictions
(Figure 7). In the Sacramento basin, the predictions
appear highly stable in the Central Valley, with more
uncertainties (represented by higher entropy) in the
mountainous area and a high level of instability in the
Modoc Plateau. Such spatial differences in prediction
skills are related to the varying complexity in separat-
ing channel types with unconfined channel types more
easily separated from others (Figure 3). Nonetheless,
the correlation of entropy with predictor variables was
investigated to reveal the underlying structure of the
uncertainty associated with the predictions (Figure 7).
Only three predictor values were significantly corre-
lated based Spearman’s rank correlation ρ, elevation,
slope and confinement distance with values of 0.30,
0.25 and −0.37, respectively.
Transition probabilities were computed for the

Sacramento basin predictions (Figure 5). A chord di-
agram displays the probability of transitioning from
one channel type to another by links between each sec-
tors. These probabilities are undirected and are thus
better understood as probabilities of being adjacent to
another interval of a given channel type. Black arrows
highlight the highest probability link. Self-transition,
the transition from an interval of a given channel type
to an interval of the same channel type, is represented
by the bar in each sectors. In the Sacramento basin,
the channel type with the lowest self-transition prob-
ability is the high gradient step-pool/cascade. This
channel type transitions mainly to boulder-bedrock
uniform streams and to the other confined channel
types. In turn, these have links to partially confined
channel types. The unconfined channel types tran-
sition mostly to themselves and to other unconfined
channel types.

D. Random Forest Predictions Capture the
Large-scale Organization of the Landscape

The geomorphic relevance of the RF model predic-
tions was investigated in the study area. Overall, RF
predictions of channel type exhibit the expected large-
scale organization of the landscape (Figure 6): uncon-
fined meandering streams occur in the Central Val-
ley, boulder dominated step-pools occur in the moun-
tainous areas. Additional qualitative investigations of
the predictions were performed in combination with
aerial imagery and indicated general good agreement
with expectations. In the Sacramento basin, noisy
predictions could be expected both from the pairwise
DCMs analysis (Figures 2-3) and from the median
cross-validation accuracy (61%).

The variable importance of the RF model identi-
fies driving predictors and overcomes the “black box”
nature of some ML approaches (Figure 8). Three pre-
dictor variables appear significantly more important
than the others: valley confinement, drainage area
and stream order. Apart from these three variables,
channel slope and local drainage density, the most
important predictors are fractal dimension predictors
(Hurst coefficients), underlining their significance in
the model performance. The importance of the fractal
dimension and topology predictors is also suggested by
the DCM analysis (Figures 2-3) and is supported by
similar variable importance assessment for the ANN
model.

V. DISCUSSION

A. Predicting Reach-scale Labels with
Coarse-scale Predictors

Channel types are determined from relatively coarse
predictors with reasonable performance in statistical
learning (Figure 4), uncertainty (Figure 5 and 7), and
geomorphic relevance (Figure 6). Five points appear
critical in assessing this performance and will be useful
to expand these methods to other areas of study and
other bottom-up spatial predictions problems related
to hydrologic regimes [20], surface–groundwater inter-
actions [121], landsliding risk [30], or erosion processes
[32]: (i) using DCM to understand the characteris-
tics of the problem and to reduce predictor noise sig-
nificantly improves statistical learning accuracy (Fig-
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Figure 4: Distribution of cross-validation accuracies for all classifiers (Table IV) for the SpCV-SMOTE-b run
for the Sacramento basin (Table VI). CS indicates that Box-Cox transformations were applied when required;
NZV means that the predictors with near-zero-variance were filtered; Corr indoicates that highly correlated
predictors were filtered; ICA and PCA mean that independant component analysis and principal component
analysis were performed on the predictors, respectively.

ures 2 and 3 and Table VI); (ii) while RF was se-
lected as the best algorithm in this study, training
and validating multiple algorithms select the model
with the best performance in a more reliable way (Fig-
ure 4); (iii) when spatial correlation is expected, spa-
tial cross-validation should be applied to limit label
leaking from the training set to the testing set; (iv)
investigating the spatial structure of the uncertainty
associated with the predictions informs on the pre-
diction skill and potential data gaps (Figure 7); and
(v) when possible, assessing predictor importance pro-
vides insight in the physical validity of the model (Fig-
ure 8). In this study, the variable importance for the
RF model shows that valley confinement, drainage
area, and stream order are the most useful predic-
tors of channel type (Figure 8). The presence of local
drainage density confirms its relevance for describing
geomorphic processes [51].

Fractal dimension – the statistical roughness of to-
pography – exhibits more control on model predictions
than traditional Terrain Analysis Metrics (e.g., eleva-
tion and curvature) based on 10-m topographic data.
Interestingly, fractal dimension predictors are not sig-
nificantly correlated to other predictors (T4, Figure
2) suggesting that they capture unique characteristics
of the landscape at different spatial scales. The inte-
grative nature of fractal dimension in terms of land
sculpting processes appears here to provide a holistic
landscape description that is more useful for predict-
ing channel form than traditional near-channel terrain
predictors.

The spatial resolution of the predictors may signif-
icantly impact their discriminative power and affect
model performance. A major challenge of this study is
the mismatch between the scales of the predictors in-
puted to the ML models and the scale at which labels
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have been defined. The labels correspond to channel
types defined from field survey data at a 100 to 102-m
scale [45]. In contrast, the spatial resolution of the
predictors lies typically between 102 and 105 meters
(Table II). The DCM analysis removes the coarsest
scale (usually > 103 m) contextual predictors such as
lithology, land cover and climate (Figure 2). However,
it is unclear if these predictors are simply not strongly
correlated to channel type or if they are just not avail-
able at sufficiently fine scales to distinguish important
relationships.

The 10-m DEM used in this study may be less
appropriate to decipher channel types than higher-
resolution topography (e.g., 3 m) that better captures
features linked with Earth surface processes [e.g., 122].
However, even with high-resolution topographic data,
identifying the appropriate scale to describe local mor-
phology remains challenging [123] and coarser resolu-
tion (5–10 m) may be best suited in some cases. For
example, Lisenby and Fryirs [124] found that sediment
connectivity was best represented using a 25-m rather
than a 5-m or a 1-m DEM. Calculation of channel
slope using the 10-m DEM may lead to substantial
error, especially for short stream intervals [21]. Such
an error-prone estimate of channel slope might explain
why such a dominant control on geomorphic processes
[e.g., 118] is not a more prominent predictor in the RF
model (Figure 8). Further investigations are ongoing
with topographic lidar data, but much of the world is
still only covered with 10-m topographic data making
this study a useful and extensible exercise.

The spatial scale mismatch between labels and pre-
dictors partly explains why RF outperforms deep
learning algorithms (Figure 4). RF may benefit from
its characteristic ensemble decision process [125] and
its robustness to predictor noise [e.g., 96], but deep
learning approaches have been very successful at pre-
dicting complex patterns [e.g., 126]. In particular, a fi-
nite deep learning network can approximate any func-
tion between input and output [127, 128] while avoid-
ing local optimization minima [129] and keeping a rel-
atively limited number of parameters [49]. As much
as such a remarkable ability is rooted in mathemat-
ics and physics, complex structure often results from
a sequence of simpler steps in a hierarchical genera-
tive process. Such a hierarchical process is efficiently
reversed by stacked deep learning architectures when
they can approximate near-perfect information distil-
lation from one step of the generative process to the
next [49]. This suggests that the gap between the scale
of input data and the scale of output labels may be
too wide in the Sacramento River basin to be bridged
by deep learning. In addition, the difference in perfor-
mance between traditional ML models (e.g., RF) and
deep learning models might diagnose scale mismatch
and be used to compare hierarchical bottom-up clas-
sifications established in vastly different settings.

B. Geomorphic Implications of Entropy and
Fractal Dimension

While we used entropy to select models with the
best information content, the concepts of entropy in
information theory and in statistical mechanics are
closely related [130, 131]. In information theory, en-
tropy measures the uncertainty of the information
transmitted by a noisy process [114]. In statistical
mechanics, entropy quantifies the number of accessi-
ble microscopic configurations for particles in a gas
[e.g., 132]. Importantly, both in information theory
and in statistical mechanics, entropy measures the
inverse of degree of correlation in a system. Taking
statistical mechanics as example, at low temperature,
mean energy is low, limiting the number of accessi-
ble microscopic configurations, which leads to signifi-
cant correlation in the system and to a lower entropy.
Conversely, at high temperature, mean energy is high,
implying a higher number of accessible microscopic
configurations, which leads to a lower degree of corre-
lation in the system and to a higher entropy.

In the Sacramento area, channel type diversity,
stream interval entropy, and frequency of channel type
transitions are the highest in mountainous areas, indi-
cating that there are many possible channel type con-
figurations (Figures 5-7). As a consequence, stream
interval entropy correlates albeit weakly with slope
and elevation which are both associated with higher
energy to do geomorphic work [e.g., 133]. Such a cor-
relation harks back to early comparisons of entropy
in geomorphic and thermodynamic system which sug-
gested a complete analogy between elevation and tem-
perature [134–136]. While our results are more nu-
anced than these theoretical studies, our findings are
reminiscent of the Boltzmann distribution which indi-
cates that microscopic configurations of higher energy
are less probable than microscopic configurations of
lower energy. For example, the steepest channel type,
step-pool/cascade is the most unstable (Figure 5). In
addition, as this channel type is not limited to first-
order streams, transition probabilities likely identify
these stream intervals as high-energy unstable forms
associated with knick zones of limited spatial exten-
sion [e.g., 14]. Recently, entropy was used to charac-
terize the diversity of physical typology of river net-
works and define areas with similar hydrogeomorphic
characteristics [18]. In a similar fashion, stream inter-
val entropy in this study highlights distinct areas in
terms of available energy.

Similar to entropy, fractal dimension is a measure of
the degree of correlation of the topography. Low frac-
tal dimension indicates a positively correlated surface
(i.e., smooth) while high fractal dimension indicates
negative correlation (i.e., jagged). In the Sacramento
basin, mountainous areas generally have high fractal
dimension while the Central Valley is characterized by
lower fractal dimension. This suggests that the cor-
relation structure of the topography as described by
fractal dimension is closely linked to the correlation
of channel types as described by stream interval en-
tropy. In other words, fractal dimension relates to the
distribution of available energy which is linked to the
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distribution of accessible channel types. Conforming
to physical and geomorphic intuition, the number of
channel types and the energy of the hydro-geomorphic
processes they represent are both expected to be
higher in areas with high fractal dimension. This rela-
tionship between fractal dimension, geomorphic work
and channel types explains in part the importance of
fractal dimension predictors in the RF model (Figure
8). Further investigations are ongoing to decipher the
links between fractal dimension, entropy and chan-
nel types as well as its physical meaning, mainly un-
derstood through its small-scale and large-scale end-
members describing erosion processes and tectonism,
respectively [e.g., 56–58, 137–139].

VI. CONCLUSION

While ML and deep learning are increasingly har-
nessed in the natural sciences, their application in hy-
drologic sciences has been slow. This is partially ex-
plained by a preference for physics-derived, process-
based modeling. This study exemplifies how some of
the black box aspects of ML can be clarified through
a rigorous approach both in model design and in the
evaluation of model performance in statistical learning
and predictive modeling. Our three-tier framework
is transferable to other bottom-up spatial prediction
problems prevalent in hydrology and tackles the signif-
icant challenge of predicting reach-scale field-derived
channel types using publicly available coarse-scale pre-
dictors. Random Forest predictions coherently cap-
ture the large-scale geomorphic organization of the
landscape, and entropy derived from posterior proba-
bilities maps the predictive performance of the model
and underlines uncertain and stable areas. Chan-
nel types appear partially controlled by the statisti-
cal roughness of the topography, which relates to the
distribution of energy available to generate distinct
channel types. Avenues for future research include
comparison of bottom-up hierarchical classifications
across diverse study areas, interpreting the physical
meaning of fractal dimension at different scales and
incorporating aerial imagery as input data given the
demonstrated image recognition performance of con-
volution neural networks.
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Appendix A: Estimating Entropy for Point
Patterns Predictions

In this study, entropy is used to select the model
with the expected lowest uncertainty. While we use
entropy rate to prognosticate such uncertainty, this
constrains our method to predictive modeling where
transition probabilities can be computed. However, a
kernelized entropy can be derived in a more general
case with an interpretation similar to entropy rate.
In particular, this estimation of model performance is
model-agnostic, addressing the issue that ML models
may exhibit different shapes for their posterior prob-
ability distributions even after posterior calibration.

Such a kernelized entropy is calculated using spatial
statistics derived from the most probable class – in our
case, channel types. Kernel smoothing then maps the
relative risk, that is the spatially varying estimates
of the probability of occurrence of each channel type.
The resulting spatial probabilities are then aggregated
by calculating their entropy and the spatial distribu-
tion of entropy matches the network-scale evaluation
of the instability from entropy rate. Then, similar to
entropy rate, comparing the distribution of kernelized
entropy across models selects the ML model with the
best information content [40, 117].

One key point in this approach is the selection of the
bandwidth which determines the amount of smooth-
ing introduced by the Gaussian kernel: Large band-
width values correspond to a high degree of smooth-
ing and vice-versa. Kernel bandwidth is selected as
the mean value between: (i) the median length of the
stream-intervals as defined in the NHDPlusV2, (ii) the
mean length of the stream-intervals as defined in the
NHDPlusV2, (iii) the inflexion point of the Ripley’s
K and Besag’s L∗ function, (iv) the inflexion point
of the pair correlation function g(r). The Ripley’s
K, Besag’s L∗ and the pair correlation g(r) functions
characterize a point pattern [e.g., 140] and identify
how clustering evolves with increasing scale. An in-
flection point marks the scale at which the clustering
starts to slow down with increasing scale and was es-
timated using a segmented linear regression. Such a
kernel bandwidth selection process is sound but intro-
duces a parametric component.
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