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Abstract The systematic and integrative approach to opti-
mum watershed management couples a watershed simulation
model and an efficient optimization algorithm for evaluating
great number of “what if” scenarios in the search domain. This
study integrates a multi-objective Non-dominated Archiving
Ant Colony Optimization (NA-ACO) algorithm as an optimi-
zation tool with Soil and Water Assessment Tool (SWAT) as
the simulation module for optimum management of total
suspended solids (TSS) loading to downstream water bodies.
The resulting NA-ACO–SWATmodel is computationally and
experimentally expensive because of the large number of
required function evaluations which demands repetitive exe-
cution of SWAT simulation model. To increase the computa-
tional efficiency of the watershed simulation model, the
SWAT model is replaced by a trained artificial neural network
(ANN) model to form a hybrid NA-ACO–SWAT–ANNmod-
el to efficiently develop the set of optimum non-dominated
solutions for configuration and design of detention ponds in
basin scale. The applicability of the proposed method is eval-
uated at Gharesou watershed in the northwest of Iran. The

outcomes of the proposed approach is further analyzed and
compared in terms of their quality of solutions and computa-
tional efficiencies. Results show that the proposed hybrid
approach may reduce the computational time by 90 % while
keeping the accuracy of the results in the same order.

Keywords Non-dominated Archiving Ant Colony
Optimization algorithm . Artificial neural network . SWAT .
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1 Introduction

Structural Best Management Practices (BMPs) are often used
for sediment and nutrient control in both urban and agricul-
tural watersheds. Wet detention ponds, as one of the most
efficient elements in BMPs, have successfully been used for
many years. They are known as the storm water control
structures that can be used for both water quality and quantity
management.

In general, a higher level of nutrient removal and better
storm water quantity control can be gained in wet detention
ponds than other BMPs. Wet ponds are often used to improve
runoff water quality through controlling the total suspended
solid (TSS) loading to downstream receiving water bodies.
The ponds are usually designed as single elements, and their
interactions in an integrative environment are often
disregarded. Generating cost-effective pond size and configu-
rations that satisfy system-wide targets for total target sedi-
ment removal believed to be much more effective [20, 22].

In general, the systematic and integrative management
approach may be developed which applies watershed inten-
sive mathematical simulation model and evolutionary (or
meta-heuristic) search-based algorithms to evaluate great
number of “what if” scenarios in the search domain.
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Simulation–optimization (S–O) approach which links a de-
tailed simulation model with a meta-heuristic or population-
based evolutionary algorithm (EA) for solution of verity of
optimization problems has received considerable attention. As
highlighted by Wagner [50], the meta-heuristic and/or EAs
have considerable priority over implicit enumeration tech-
niques in locating good near-optimal solutions to combinato-
rial optimization problems with greater efficiency. They han-
dle the discontinuities and nonlinearities existing in most of
the real-world problems more easily than gradient-based tech-
niques. What makes use of gradient-free meta-heuristic and/or
evolutionary optimization techniques more attractive in S-O
problems lies in the possibility of using any kind of built-up
simulation package without having access to its embedded
source codes [41]. The S–O problems employing any of the
available search-based algorithms such as Genetic Algorithms
(GA) [3], Ant Colony Optimization (ACO) [23], Particle
Swarm Optimization (PSO) [31], Honey Bees Mating Opti-
mization (HBMO) [12], etc. The S–O approach may lose their
merits when a computationally expensive simulation model is
employed for objective function evaluations. Although, one
may partially overcome this problem by increasing the effi-
ciency of the search algorithm, the main ongoing challenge is
to reduce the computational cost of the simulation process
within the optimization framework. The ongoing efforts are
grouped into methods which either reduce the execution time
for each simulation run through parallel computing and en-
hanced computer architecture or using a meta-model as an
approximation to the real system to quickly supply predictions
during the course of the search [24]. The main advantage of a
surrogate model is to retain the size and scope of the original
problem while capitalizing on the simpler empirical relation-
ships between decision variables and selected model out-
comes [50]. This paper employs the latter approach to partially
overcome the problem of computationally expensive simula-
tion in the proposed S–O problem.

Although the idea of replacing an extensive simulation
model with an approximate one is not new, the concept
receives increasing popularity in the water resources simula-
tion–optimization literature as advance computing technolo-
gies and meta-modeling approaches emerge [30]. Artificial
neural networks (ANNs), as function approximators and
meta-models, have proved to be a logical choice for
application when the complexity of the mapping is diffi-
cult to anticipate. Different versions of meta-models have
successfully been used to replace computationally expen-
sive simulation models in support of engineering design
optimization [41, 51, 55].

This paper presents a hybrid modeling framework which
couples Soil andWater Assessment Tool (SWAT) and ANN as
watershed simulationmodels with a multi-objective version of
ACO (NA-ACO) to minimize both the total suspended sedi-
ment loading to downstream receiving water body and the

construction cost of the wet detention ponds in an integrative
scheme. The NA-ACO–SWAT is computationally and/or ex-
perimentally expensive because of computational burden of
SWAT simulation model and large number of required func-
tion evaluations to locate good near-optimal solutions. To
increase the computational efficiency of the proposed simula-
tion–optimization scheme, the SWAT model is replaced by a
trained ANNmodel to form a hybrid NA-ACO–SWAT–ANN
model to find the set of optimum non-dominated solutions for
detention ponds design in basin scale. The applicability of the
proposed method is evaluated using Gharesou watershed in
the northwest of Iran. The outcomes of bothmodels are further
analyzed and compared in terms of their quality of solutions
and computational loads.

2 Literature Review

Although, the integration of any multi-objective version of
ACO with the SWAT and ANN for watershed management is
of very recent origin, extensive applications of any of the three
models in different areas of water resources management have
been reported.

As documented by Gassman et al. [21], over 250 peer-
reviewed published papers have reported SWAT applications,
components’ reviews, or cited SWAT. It is a comprehensive
spatial and temporal simulation model, developed by Arnold
et al. [8] for USDA-ARS (USDA-Agricultural Research
Service). The SWAT model has been extensively tested for
hydrologic modeling at different spatial scales for flow simu-
lation [15, 38, 46]. Tolson and Shoemaker [48] applied SWAT
model to a New York City water supply reservoir
(Cannonsville Reservoir). They found that SWAT is a valuable
tool that can be used to help evaluating the long-term effects of
various phosphorus management options for mitigating pol-
lutant loading to the reservoir. In an interesting work, Zhang
et al. [54] applied SWAT model for snowmelt-driven flow in
the 114,345-km2 headwaters of the Yellow River. It has been
successfully used to simulate water and pollutant load in
various watersheds around the world [2, 36, 40].

Different versions of ANNs have successfully been used in
modeling complex systems such as conjunctive use modeling
and groundwater systems operation [34, 35], water distribu-
tion design with water quality consideration [14], rainfall–
runoff modeling [45], prediction of daily stream flow [47],
groundwater simulation [52], inferring reservoir operating
rules [30], and water quality model calibration [6]. Yan and
Minsker [52] replaced a computationally expensive ground-
water simulation model with a dynamic modeling approach in
which ANNs are adaptively trained within a genetic algo-
rithm. In an interesting work, Johnson and Rogers [24]
employed ANNs to examine their impacts on the quality and
quantity of solutions obtained from simulated annealing-
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driven searches on two different groundwater remediation
problems. The quality of results obtained when ANNs served
as substitutes for the full model was consistently comparable
to those obtained when the full model itself was called in the
course of the search.

During the last decade, application of different versions on
ANNs to approximate SWAT model for prediction of water-
shed responses to various scenarios and/or human activities
has received considerable attention. Zhang et al. [55] used
ANNs and support vector machine (SVM) to evaluate their
performances as a surrogate model for approximating the
SWAT model. They applied ANN as the surrogate models to
speed up the determination of proper hydrological calibration
parameters in SWAT model. It was illustrated that surrogate
models may efficiently be used to approximate the computa-
tionally intensive models. Demirel et al. [17] compared the
performance of ANN and SWAT model in daily flow fore-
casting of the Pracana Basin in Portugal. Their results show, in
general, ANNs can be powerful tools in daily flow forecasts.

The systematic watershed management approaches such as
coupling watershed simulation model with heuristic optimi-
zation techniques in deriving optimal BMPs have been tackled
in various researches. Successful simulation of various sce-
narios on different basins around the world has identified
SWAT as an effective method for evaluating alternative wa-
tershed management practices [13, 7, 26, 25, 27, 32, 33, 38,
39, 49]. To find the optimal BMP in watershed scale at
different hydrological settings, SWAT and GAs have success-
fully been coupled to locate near-optimal solutions [25]. Re-
cently, Kaini et al. [26] developed a multi-objective optimiza-
tion approach to find a set of near-optimal solutions to trade
off between cost and sediment control for constructing BMPs
in watershed scale. In an interesting research, Qi and Altinakar
[32] coupled a process-based watershed simulation model
with a modern heuristic optimization technique to man-
age watershed land use allocation for achieving sustain-
able development. In an extension to their previous
research, they included the placement of vegetation of
buffer strips (VBS) in the watershed to guarantee the
efficiency of the VBS applications in varying geological
and economic conditions [33]. In a most recent work,
Skardi et al. [44] used SWAT with game theory concept
in a simulation–optimization approach for nonpoint
source pollution management.

ACO algorithm was initially proposed by Dorigo et al. [18]
as a meta-heuristic approach to solve different problems in-
cluding the traveling salesman and the quadratic assignment
optimization problems. Although, ACO was basically devel-
oped for the discrete optimization problems, different versions
of ACO have successfully been applied in both discrete and
continuous domains in various water resource problems such
as the following: parameter estimation in unsaturated soils [1],
water distribution system optimization [4, 29, 53], single and

multi-objective optimization of reservoir operations [5, 23],
and continuous reservoir operation [28].

3 Model Description and Development

In this research, an effective and integrative methodology is
developed to identify the optimal size and configuration of
detention ponds in watersheds to control the TSS pollutant
loading to downstream receiving water bodies. The SWAT is a
careful spatial and temporal analysis tool and high fidelity
simulation model for predicting the important characteristics
of watershed system behavior. However, it remains computa-
tionally far too expensive, especially in coupling with search-
based algorithms to derive optimum watershed management
strategy. To overcome this bottleneck, a data-driven ANN
model is used to considerably reduce the computational time
while maintaining the prediction accuracy in acceptable range.
The structured ANN model suggests a functional relationship
between selected decision variables and watershed system
responses. The surrogate ANN model is coupled with multi-
objective ACO algorithm to derive optimal location and sizes
of detention ponds in watershed scale. The developed integra-
tive framework in this research minimizes the practice costs
and annual TSS pollutant loads. The detail description of the
integrative watershed management model components are
presented in the following subsections.

3.1 SWAT-ANN Simulation Model

The SWAT is computationally and/or experimentally expen-
sive which may reduce the merits of the proposed S–O
scheme in the proposed watershed management optimization.
The computational efficiency of the scheme is increased by
replacing SWAT model with trained ANN model to form a
hybrid SWAT–ANN model. This model is applied to predict
the watershed responses to management strategies. ANN em-
ulates the behavior of SWAT as the highly detailed hydrolog-
ical and water quality simulation model. This fast analysis tool
is implemented in optimization and exploration of the design
space by using approximations in lieu of the computationally
expensive analysis codes (SWAT).

Data-driven ANN model is able to learn from examples
and respond to functional relationships within the data, even
when the underlying relationships are unknown or difficult to
describe. In addition, ANN is able to mimic the behavior of
nonlinear multivariate functions with high accuracy. This
feature is very important since very large problems such as
real-world case studies encompass complicated unknown
nonlinear patterns and/or behaviors.

Input variable selection is an important part of the identifi-
cation of ANN models since the form of the model is derived
purely from the available data. In real-world applications,

Hybrid ACO–ANN-Based Multi-objective Simulation–Optimization Model 31
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such as SWAT analysis, there are potentially many variables
that could be used as inputs to the ANN model. However, for
the development of ANN models, the minimum number of
variables should be used as inputs to the ANN in order to (1)
increase computational efficiency, (2) minimize redundancy,
(3) reduce noise, and (4) increase the interpretability of the
model [9, 42].

The existence of height–width relationship in a design
of wet detention ponds provides unique information about
pond’s geometry. The area and volume as the geometry
data are estimated using the mathematical equations. Gen-
erally, geometric characteristics have important role in
sediment entrap and settlement. Average annual TSS and
economic cost of pond constructions and maintenance are
state variables associated with any given management
option.

Due to dependency of geometric parameters (i.e.,
height, volume, and surface area), height vector of de-
tention ponds, as a collection of numbers between zero
and given ranges, forms the ANN input data. Each
member of this vector shows the geometric property of
a given detention pond in a known position. The zero
values mean that no pond is nominated for that specific
location. The volume and surface area of the pond is
calculated using the known height–width–volume rela-
tionships. These geometric characteristics are required
by the SWAT model to estimate the annual average
TSS concentration. The structure of the ANN input data is
presented in Fig. 1.

Multilayer feed forward network is used for function
approximation in the proposed ANN. Feed forward lay-
ered networks have the flexibility to approximate
smooth functions arbitrarily well through providing suf-
ficient nodes and layers [11]. The performance of ANN
network in this research is evaluated with various

training functions, learning functions, and neuron num-
bers in the hidden layer. The optimal structure of the
ANN is selected based on the approximation accuracy
of the validation data among various defined ANN
structure alternatives.

3.2 Non-dominated Ant Colony Optimization Algorithm

3.2.1 General Aspects of ACO Algorithms

It is shown that a colony of ants is able to find the
shortest route from their nest to a food source via an
indirect form of communication. This communication
involves deposition of a chemical substance, called a
pheromone, on the paths as they travel. Over time,
shorter and more desirable paths are reinforced with
greater amounts of pheromone, thus becoming the dom-
inant path for the colony. Ant Colony Optimization
(ACO) is inspired by the foraging behavior of ant colo-
nies, and this collective trail-laying and trail-following in
which an ant is influenced by the pheromone trail left by
other ants. Ant algorithms benefit from artificial ants
which deposit pheromone based on the fitness and goodness
of the identified trial solutions.

A graph is very helpful for successful application of
the ACO algorithms to combination of optimization prob-
lems. Consider G=(D,L,C), in which D={di} is the set of
decision points at which some decisions are to be made,
L={lij} is defined as the set of the options j=1,2,…,NC,
at each decision point i=1,2,…,NT, and C={cij} is the set
of costs associated with L={lij}. An acceptable solution
based on the graph is called an answer (φ)k, and the path
associated with minimum cost is called the optimum
solution (φ*)k.

Fig. 1 Schematic structure of the
proposed ANN model

32 M.J. Emami Skardi et al.



Only
 fo

r re
ad

ing
 

Do N
ot 

Dow
nlo

ad

The decision policy pij(k,t) in ant system (AS) defines the
probability that edge (i,j) will be selected at decision point i as
[18] the following:

Pij k; tð Þ ¼

Γ ij tð Þ
� �α

ηij tð Þ
h iβ

X
j¼1

J

Γ ij tð Þ
� �α

ηij tð Þ
h iβ if j ∈Allowedk

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð1Þ

Here, Pij(k,t) is the probability that the ant number k selects
option j at decision point i and iteration t. Γij(t) is the concen-
tration of pheromone on arc (i,j) at iteration t; ηij(t)=(cij)

−1 is
the heuristic value representing the cost of choosing option j at
decision point i, and α and β are two parameters that control
the relative importance of the pheromone trail and heuristic
value. The heuristic value ηij is analogous to providing the
ants with sight and is something called visibility. The total
number of ants, k, as well as α and β are tunable model
parameters. For α>>β, the decisions will be based mainly
on the learned information, as represented by the pheromone.
For very large values of β (i.e., β>>α), the algorithmwill set a
greedy heuristic and disregards the impact of decisions on
final solution quality. In any iteration, the pheromone is updated
through evaporation. Pheromone evaporation has the advantage
of avoiding the rapid premature convergence to a local optimal
solution. Without pheromone evaporation, the paths chosen by
the very first ants would be excessively attractive to the follow-
ing ants, and consequently, the exploration of the solution space
would be constrained. The pheromone may be updated using
the following relation:

Γ ij t þ 1ð Þ ¼ 1−ρð ÞΓ ij tð Þ þ ρΔΓ ij tð Þ ð2Þ

Here, Γij(t+1) is the amount of pheromone trail on option j
of the ith decision point at iteration t+1; 0≤ρ≤1 is the phero-
mone evaporation coefficient, and finally, ΔΓij(t) is the
change in pheromone concentration associated with arc (i,j)
at iteration t. Although, several methods are available to
determine the value of ΔΓij(t), this study benefits from one
used by Afshar et al. [5]:

ΔΓ ij tð Þ ¼

γ

1þ Gkgb
� if i; jð Þ∈ tour done by Ant kgb

�

0 otherwise

8>><
>>:

ð3Þ
Here, Gkgb

�
is value of the objective function corre-

sponding to the ant kgb
* as the ant with the best perfor-

mance within the past total iterations, and γ is a constant
coefficient.

3.2.2 Multi-objective Ant Colony Optimization Method

In the single objective problem, the optimal solution is unique.
In the multi-objective ones, however, there is a set of non-
dominated solutions that is known as the Pareto front. Deb
[16] discussed the concept of domination and non-dominant
solution in multi-objective optimization problems as the
following:

“A solution ×1 dominates a solution ×2, if solution ×1 is
strictly better than solution ×2 in all M objectives,” and
“Among a set of solutions P, the non-dominated set of solution
P ′ are those that are not dominated by any member of
the set P.”

Multi-objective Ant Colony Optimization (MACO) algo-
rithms have widely been used to investigate optimization
problems [4, 10, 19]. A detailed background about the appli-
cation of multi-objective ACO is presented by Dorigo et al.
[18]. Afshar et al. [5] proposed a new version of ACO-based
algorithm for multi-objective problems known as “Non-dom-
inated Archiving ACO” (NA-ACO). In this algorithm, a col-
ony of agents with the same population is assigned to each
objective and the pheromone updating is performed by the
best ant in each colony. All ants in each colony simultaneously
explore a solution which is evaluated according to the objec-
tive defined for that colony. These trial solutions are then
transferred to the next colony to be evaluated and being
updated according to the objective of the next one. Then,
new found solutions on the basis of the updated pheromone
trail in the second colony are transferred to the first colony, in
the case of two objective function problems. This cycle is
repeated for a predefined number of iterations. After ending
the predefined iteration, the non-dominated solutions are
transferred to an offline archive for more pheromone updating.
Then, the pheromones of two colonies are updated according
to the non-dominated solutions in the offline archive. Finally,
the algorithm returns to the starting point for another iteration.
This process continues to a predefined number of total itera-
tions or a favorable number of archived Pareto answers. In this
research, the NA-ACO is implemented to address the set of
non-dominated solutions for a real-life watershed manage-
ment problem.

3.3 Simulation–Optimization (S-O) Model

As depicted in Fig. 2, the proposed methodology consists of
three main elements: Non-dominated ACO algorithm, SWAT,
and ANN model. The optimization algorithm is programmed
in MATLAB environment and coupled with ANN model that
is included as a toolbox in the same programming language.

In the first step of the proposed S–O framework, ANN is
trained based on the results provided by SWAT simulation
model according to various conservation practices in the wa-
tershed. Various conservation practices consisting of variant
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size and configurations of wet detention ponds are randomly
defined to train the ANNmodel. The surrogate ANNmodel is
trained, tested, and validated based on intensive combination
of various training functions, learning functions, and neuron
numbers. Finally, the optimal structure of ANN, as the surro-
gate model, is chosen among various ones based on approx-
imation accuracy in validation step. In the second step, ANN
as the simulation model is coupled with the NA-ACO as the
optimization algorithm to derive optimal and/or near-optimal
watershed management practice. Average annual TSS is ap-
proximated by ANN model for any trial solution identified by
the optimizer (NA-ACO).

The proposedmethodology is expanded to solve the typical
multi-objective watershed management problem involving
both TSS loading and economic goals. The methodology is
designed to yield directly the size and configuration of wet
detention ponds that simultaneously minimize TSS loading
and construction and maintenance cost subject to specified
constraints.

The optimization formulation of the proposed methodolo-
gy may mathematically be expressed as follows:

Minimize PONDC ¼
X
i

X
j

PONDC

Minimize
X
i

TSSi load
ð4Þ

Subject to

Aij≤Amax

S j≤S jmax

Here, PONDCij is the construction and maintenance cost of
pond number j in subbasin number i; Aij is the surface area of

the pond number j in subbasin number i which should be less
than a maximum value of Amax. Sj is the storage of the ponds
which should be less than a predetermined maximum volume
of Sjmax. The units of cost and TSS loading in the objective
function (Eq. 4) are dollar and ton per hectare per year,
respectively. TSSiload is the loading TSS from the subbasin
number i. The cost value (PONDCij) is evaluated based on the
mathematical function of pond’s volume. The other objective
function namely, average annual TSS (TSSiload) is approxi-
mated by ANN model instead of the SWAT model to save the
computational time.

The construction and maintenance cost of the pond in
subbasin i is site dependent and a functional relation (and/or
a look up table) should be made available as input data to the
model. A typical form of this functional relation is introduced
and used in the case study and application of the model. The
TSS loading for any trial solution (or strategy) will be deter-
mined by running the simulation model (i.e., SWAT and/or
proposed data-driven meta-model). In other words, for any
trial solution which is addressed by a set of decision variables,
the simulation model will be executed to estimate the value of
the resulting TSS loading. This means that if the optimization
is performed with 500 ants and 2,000 iterations (i.e., total of
1,000,000 function evaluations), then the simulation model
has to be executed 1,000,000 times to address the trial values
of TSS loadings. Although, we explicitly consider the
height of the ponds as decision variables, we implicitly
account for their length, width, volume, and surface area
in the functional relationship to their heights. In other
words, for a given site with known geometry and lon-
gitudinal slope of the reach, as well as the side slopes
of the embankment, any combination of pond’s volume,
surface area, length, and width will be uniquely defined
by the height.

Running SWAT model to 

generate adequate data for ANN 

Training an ANN 

Running ANN to determine the Average Annual 

TSS according to the de�ined decision variables 

by Non-dominated ACO

Non-dominated ACO generate the decision 

variable (the heights and con�igurations of the 

wet detention ponds

Evaluating the Annual 

Average TSS

Calculating the Construction 

and Maintaining Cost of ponds 

using the cost function

Meet No 
Termination Criteria

Fig. 2 A scheme of the proposed
methodology
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4 Case Study

Gharesou watershed with a 5,793-km2 area is located in the
northwest of Iran (Fig. 3). Approximately 48 % of the water-
shed is mountainous and the remaining 52 % is plain. The
elevation of the watershed ranges between 1,300 and 3,351 m
from the sea level. The climatic condition of the watershed
varies from cold and dry in the central part of the plain to cold
and wet near the border line.

The available data to run the SWAT model consist of
digital elevation model (DEM), soil and land use maps,
climate data records from four precipitation gauges, and
two air temperature gauges during the years 1990 to
2000, which were obtained from the Iran Metrological
Organization. The highland soil consists of sand and
gravel besides the silt with substantial erosion. The
runoff and TSS loading from the watershed, to down-
stream water bodies, has been calculated based on cal-
ibrated model by Sadeghi [37] with CUP_SWAT. The
data from 1990 to 1996 has been used for the calibra-
tion, and the data from 1997 to 2000 has been used for
the model validation. To facilitate the application and
maintain the desired accuracy, the watershed was
subdivided into 17 subbasins and 113 Hydrological Re-
sponse Units (HRUs). More information about Gharesou
watershed simulation model could be found in research
by Sadeghi [37]. In this study, the potential locations of
the ponds for each subbasin are assumed to be known.
The pond location in any subbasin determines the frac-
tion of the runoff water which will potentially drain into
it. These fractions for potential pond locations for each
subbasin are presented in Table 1.

The relative height–width relation for each pond is present-
ed in Table 2. The height of the proposed ponds in the trial
solutions are determined by the optimization algorithm. Hav-
ing the height and its associated width (Table 2), the surface
area and storage volume for the ponds may be estimated using
the mathematical equation (Eqs. 5 and 6).

VolumePond ¼ a:b:hð Þ þ h3

3� sloppond
border

� sloppond
dam

þ h3

3� sloppond
border

� �2 þ
a:h2

3� sloppond
border

þ b:h2

2� sloppond
border

þ b:h2

2� sloppond
dam

ð5Þ

SurfacePond ¼ a:bð Þ þ b:h

sloppond
border

þ 2h2

sloppond
border

� �2

þ a:h2

sloppond
border

þ 2h2

sloppond
border

� sloppond
dam

þ b:h

sloppond
dam

ð6Þ

Here, VolumePond is the principle volume of the ponds;
SurfacePond is the principle surface for the ponds; sloppond

border

is the slope of the ponds’ border; sloppond
dam

is the slope of the

embankment; and a, h, and b are the length, height, and width
of the pond, respectively.

Brief descriptions of the cost function and simulation time
horizon are described in Table 3. The cost function of BMP in
Gharesou watershed is related to construction and mainte-
nance cost and the maintenance duration. The construction
and maintenance costs are functions of the volume of wet
detention ponds.

5 Results and Discussion

In order to train the proposed surrogate ANN model for
prediction of the Gharesou watershed response to manage-
ment strategies, data from application of the SWAT model to
the same watershed under various strategies are used. For the
purpose of reliable data generation, the SWAT model which
was calibrated and verified for the same watershed was
employed [37]. Calibration and verification of the SWAT

Fig. 3 The Gharesou watershed in Iran

Table 1 The potential locations for construction of ponds in different subbasin and the fraction of the draining runoff water

The subbasin’s number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fraction of the basin that drains into the pond 0.4 0.2 0.1 0.4 0.3 0.5 0.1 0.2 0.2 0.3 0.1 0.3 0.2 0.1 0.5 0.2 0.5
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model was performed automatically using field data for the
periods of 1990–1996 and, 1997–2000, respectively. It was
shown that the calibrated model may be used to estimate the
responses of the watershed to varying range of management
options [37].

In this research, ANN as an approximation tool is
replaced by watershed comprehensive hydrological and
water quality simulation model, namely SWAT. ANN is
trained based on finite conservation practices simulated
with the SWAT model as the input data. The structure
of ANN is assessed based on various training functions,
learning functions, and several numbers of neurons to
construct the more accurate approximation model. The
final functions are assigned to ANN structure based on
intensive sensitivity analysis on numerous training and
learning functions in MATLAB environment. The num-
ber of neurons in hidden layer was allowed to vary
between 4 and 20. Finally, based on intensive sensitivity
analysis, “learncon” and “trainbr” functions have been
applied as the learning and training functions of ANN
model in MATLAB environment, respectively. The total
of 10 neurons has finally been included in the hidden
layer as the optimum number. The best ANN structure
is selected to provide insight on the behavior of the
watershed system to repeat “what if” analyses quickly.
The final structure is selected among various structure
combinations of ANN model based on approximation
accuracy in validation step. The structure of ANN mod-
el is proportional to the final optimal structure derived
based on the intensive sensitivity analysis. The annual
average TSS load is modeled with the process-based
model, namely SWAT, as the target values. Also, the
annual average TSS loads as the output values are
derived with ANN model.

To exhibit the ANN accuracy in approximation of
average annual TSS based on various conservation prac-
tices in the watershed, the statistical criteria based on
training, validation, and testing data are represented in

Table 4. As presented in Table 4, the accuracy of ANN
model to predict watershed responses according to var-
ious conservation practices is satisfactory. The high
correlation coefficients in training, test, and validation
data show the satisfied approximation accuracy.

In the next step, the integrative watershed manage-
ment framework is applied. The proposed methodology
relies on the interface between ANN and non-dominant
ACO algorithm as illustrated in Fig. 2. The optimization
model developed here, however, requires an iterative
search for which a number of function evaluations, or
ANN calls are necessary. The surrogate ANN as the
approximation model is implemented to considerably
reduce the computational time through rapid reporting
of the watershed response. Rapid response reporting will
highly enhance the efficiency of the model in account-
ing for repeated what if analysis of the changes in
management options.

To exhibit the computational advantages of proposed
methodology in this research, the computational perfor-
mance of the following alternatives are compared. The
performance of the proposed methodology in this re-
search is compared with the coupling SWAT and non-
dominant ACO technique [43]. The computational times
of S–O approach in this study are about 6 h, whereas
the combination of SWAT and non-dominant ACO re-
quires more than 64 h for the same problem. Both S–O
approaches have been terminated with the same number
of function evaluations (i.e., 100,000). Very large per-
centage of the execution time in ANN–NA-ACO model
is related to the SWAT excitation to prepare train data
for ANN model. In other words, the execution of S–O
model with ANN as the simulation model requires a
very small computer run time. The final Pareto front
derived by ANN–NA-ACO model is simulated by
SWAT model to determine the annual average TSS
based on accurate process-based model. The comparison
of two alternatives reveals that the ANN model may be
considered as an accurate and effective surrogate model
substituting the process-based SWAT model. The ANN–
NA-ACO model is recognized as a highly effective and
efficient systematic watershed management tool for de-
riving optimal and/or near optimal conservative practice

Table 2 The height–width relation for ponds

Height (m) 0.0 1.2 1.8 2.4 3.0

Related width (m) 0.0 70.0 80.0 90.0 100.0

Table 3 Brief discussion of the Gharesou watershed

Decision
variable

Cost per
volume of the
ponds ($)

The
maintenance
duration
(years)

The maintenance
cost (% of
construction cost)

Operation
period
(years)

Height 1.5 10 3 11

Table 4 The relation between the output variables and target for the
training, test, and validation data

Train Test Validation

Regression equation y=0.999× y=1.00×−0.001 y=0.998×+0.002

R2 0.999 0.997 0.999
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in large watersheds where extremely large number of
function evaluations might be required.

The derived Pareto front based on effective alternative
(ANN–NA-ACO) is achieved in 160,000 function evalua-
tions. The comparison results are shown in Fig. 4. Like
other evolutionary algorithms, a number of parameters of
ACO are needed to be set before its application. In this
study, the tuned values for the most important parameters,
namely β, α, and ρ are obtained after performance eval-
uation of extensive combinations of the parameters and the
reference values [43]. Finally, values of β=0, α=1, ρ=0.9,
and γf1(TSSS_loading)=0.1 and γf2(cost)=10.0 (γ has been
defined in the pheromone concentration changing equa-
tion) were selected for model implementation. To further
analyze the solutions on the Pareto front (Fig. 4), one of
the solutions is selected and detailed in Table 5. As
presented in Table 5, the decision variables, corresponding
to one of the Pareto front’s members, consist of the size
and configuration of wet detention ponds in each subba-
sin. The zero values of geometric characteristic in subba-
sins 1, 3, 7 to 9, 12 to 14, and 16 are representative of
lack of detention ponds in those subbasins. The nonzero
values represent the geometric characteristics of the deten-
tion ponds in the subbasins.

As expected, increasing the cost of BMP implementations
decreases the annual TSS load from the watershed. The BMP
cost in this research depends on the size and number of wet
detention ponds in the watershed. Properly located and sized
wet detention ponds would improve the sediment deposition

process rate, hence reducing the annual TSS load to
downstream.

6 Conclusion

This study presented a multi-objective simulation–optimiza-
tion model for optimum watershed management to develop a
trade-off between the adverse environmental impacts and cost
of implementing various management options. Realizing the
extensive computational time required to solve the coupled
SWAT–NA-ACO due to large number of function evalua-
tions, the SWATmodel was efficiently replaced by a surrogate
ANN model. It was illustrated that the proposed data-driven
ANN model may effectively reproduce the watershed re-
sponses under various management options. Including the
surrogate ANN model in the proposed S–O scheme consider-
ably improved the computational efficiency and practically
removed the prohibitive computational bottleneck of the orig-
inal S–O with SWAT as the simulator. Application of the
proposed hybrid S–O model to Gharesou watershed revealed
that the scheme may efficiently be used to develop the set of
optimum non-dominated solutions for large-scale watershed
management problems in a relatively small computer execu-
tion time. Although, this study was limited to optimal location
and sizing of detention ponds, the approach may easily be
extended to include other potential elements of the BMP. The
accuracy of the surrogate model in those cases with multiple
input and/or output vectors remains to be tested.

Fig. 4 The Pareto front of the annual average loading TSS to the construction cost for the ponds (the black point is presented in details)

Table 5 The detailed results of one of the Pareto front corresponding to loading TSS 1.90 and related cost $431,323.5 (trade off between cost and TSS
loading)

Subbasin no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Height of the ponds (m) 0.0 1.8 0.0 1.2 3.0 2.4 0.0 0.0 0.0 1.2 1.2 0.0 0.0 0.0 1.8 0.0 1.8

Width of the ponds (m) 0.0 80 0.0 70 100 90 0.0 0.0 0.0 70 70 0.0 0.0 0.0 80 0.0 80

Length of the ponds (m) 0.0 160 0.0 140 200 180 0.0 0.0 0.0 140 140 0.0 0.0 0.0 160 0.0 160
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