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Abstract
Robust reservoir operation has long been considered a promising solution for addressing water
allocation problems in the absence of reliable hydroclimatic forecasts. This study aims to
evaluate the performance of this solution using a novel two-stage stochastic optimization
model. The model maximizes economic benefits from reservoir deliveries while integrating
stochastic inflows into a water allocation system with multiple demands and various con-
straints. The outcome of the model is a robust set of monthly reservoir releases that perform
well under a wide range of hydroclimatic conditions. The model has been applied to the case
of the Big Bend Reach of the Rio Grande/Bravo, a transboundary river basin of high
importance for Mexico and the United States. The performance of the robust operation policy
was assessed by comparing its outcome to those obtained under observed historical operations
and an operation policy derived from a deterministic version of the optimization model that
assumes perfect hydroclimatic knowledge. The results of this study indicate that the set of
robust releases developed here outperforms historical reservoir operations and performs
similarly to operations under perfect knowledge. These results show the effectiveness of robust
reservoir operation and the usefulness of the proposed optimization model for decision-making
under increasing hydroclimatic uncertainty.
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almost similarly to the outcomes of a deterministic model with perfect hydroclimatic knowledge.
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1 Introduction

Thousands of reservoirs around the world contribute to human development by
providing a more reliable water supply, flood control, hydropower generation, and
other benefits. However, the social and environmental costs associated with the
development of reservoirs and their operations have remained unacceptably large in
several major river basins (WCD 2000), including the Colorado, Yangtze, and
Mekong (Thompson 2008). One important challenge in the coming decades is to
identify ways of improving the operation of multipurpose reservoirs (Mateus and
Tullos 2017), especially under increasing hydroclimatic uncertainty driven by climate
change (Seneviratne et al. 2012). For instance, flood occurrences have increased by
26% globally and 20% in the United States in the last decades (Berghuijs et al. 2017).
Moreover, the annual average costs associated with floods and droughts in the United
States amount to 3 and 6 billion USD, respectively (Smith 2018). Considering that a
major part of irrigated agriculture is supported by reservoirs and that millions of
people depend on dams for flood protection, such costs could be considerably
reduced by improved reservoir operations.

Developing efficient operation policies for multipurpose reservoirs is, however, a
challenging task. In spite of having complementary objectives, different water use
sectors often place conflicting water management goals on such reservoirs (Labadie
2004). For instance, a water supply objective might require water elevation to be
maintained near maximum storage to increase water supply reliability, while flood
management would advocate for a much lower water elevation with the capacity to
manage high, possibly catastrophic, inflows to reduce the risk of overtopping.
Integrating environmental flow requirements as another objective could introduce
further competition. These water use trade-offs are traditionally managed by reservoir
operation policies that dictate the range of storage and water elevation at the surface
of the reservoir at the end of each month. Operation policies divide the reservoir into
different storage zones that are used for water supply, recreation, hydropower, or
flood management (Labadie 2004). Given the considerable uncertainty associated
with water inflows, however, the effectiveness of this traditional end-of-month
storage operation of multipurpose reservoirs is becoming questionable.

The objective of this study is to identify a robust reservoir operation policy that
encompasses hydroclimatic uncertainty and improves water management by increas-
ing regional economic benefits and reducing environmental impacts. To meet this
objective, we develop and apply a novel two-stage stochastic optimization model that
integrates multiple water management objectives under uncertain hydroclimatic con-
ditions. The performance of the robust operation policy is assessed by comparing its
outcome to: (1) outcomes obtained under observed historical operations, and (2) an
operation policy derived from a deterministic version of the optimization model that
assumes perfect hydroclimatic knowledge.

This paper is organized as follows. First, a review of optimization techniques to
develop reservoir operation policies with a special focus on the area of stochastic
optimization of water resources is provided in Section 2. Section 3 describes the
proposed optimization model. Section 4 describes the study area, and Section 5
presents the results of applying the model and discusses the value of developing
robust reservoir operations. Section 6 summarizes the main conclusions.
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2 Background

2.1 Optimizing Reservoir Operation

Since the 1960s, the optimization of reservoir operation has gained importance as one of the
main research areas in water resources management (Yeh 1985). Different reservoir optimi-
zation methods have been used, including linear, non-linear, and dynamic programming with
different limitations, such as, respectively, linearizing non-linear variables, finding non-global
optima, and a heavy computational burden (Yeh 1985; Husain 2012).

Traditional deterministic optimization models are scenario-dependent, meaning that certain
variables such as reservoir inflows, water demands, or system losses are parameters in the
models. This is because only statistical descriptions of hydrologic variables or unreliable
forecasts of long-term average conditions usually exist. Consequently, deterministic optimiza-
tion models may fail to include the impacts of low probability but costly events such as floods
or droughts (Farmer and Vogel 2016).

Another approach to incorporating variability into the optimization model is to include
stochasticity in model inputs. However, reservoir operators are often skeptical of using
optimization models with such complexity (Celeste and Billib 2009; Motta de Santana
Moreira and Celeste 2017). In recent years, with the improvements in simulation models
and computational power, intelligent computational programming has been developed. A
prevalent example is Evolutionary Computation, a programming technique with different
optimization algorithms such as Genetic Algorithms, Particle Swarm Optimization, Simulated
Annealing, Honey Bees Mating, and Artificial Neural Networks. Choong and El-Shafie (2015)
provide a comprehensive review of the use and application of these techniques for reservoir
management.

2.2 Stochasticity in Reservoir Operation

The uncertainty underlying several hydrologic processes has led to the development of
stochastic optimization techniques in water resources that integrate random or unknown
variables such as precipitation, streamflow, or water demands. These techniques have been
applied to derive operation rules for single reservoir (Butcher 1971; Saadat and Asghari 2019)
and multi-reservoir systems (Stedinger et al. 2013; Macian-Sorribes et al. 2017; Zatarain
Salazar et al. 2017) under uncertain hydroclimatic conditions. An example is the Linear
Decision Rule (LDR) introduced by Revelle et al. (1969), which specified reservoir releases
based on the difference in the initial storage and a decision parameter for a particular period.
Such parameters include hydropower generation targets, water allocation rights, and minimum
navigation flow requirements. Linear problems, however, tend to have explicit single objec-
tives and consider environmental water demands as constraints within the model.

Stochastic non-linear problems have also been developed in the literature. The Stochastic
Dual Dynamic Programming (SDDP) approach was successfully applied to develop reservoir
operation policies for multi-reservoir systems (Pereira and Pinto 1991; Tilmant and Kelman
2007) and later extended and applied to the Jucar basin in Spain to explicitly include stream-
aquifer interactions (Macian-Sorribes et al. 2017). Another approach is Sampling Stochastic
Dynamic Programming (SSDP) developed to investigate methods of increasing the water
allocation efficiency of multi-reservoir operations in the Geum River basin of Korea (Kim
et al. 2007; Eum et al. 2010). SSDP incorporates the annual correlation of streamflow from
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historical or synthetic data by combining different streamflow scenarios within the optimiza-
tion model. Compared with a deterministic approach using average streamflow, the results
show improved performance if inflow uncertainty is explicitly included into the modeling
process (Kim et al. 2007). Gaivoronski et al. (2012) developed a scenario-based stochastic
optimization method of a water resources system to obtain robust policies that minimize the
risk of wrong decisions and allow the user to implement an emergency policy under a re-
optimization phase. These non-linear problems tend to become computationally intensive and
do not guarantee global optimal solutions.

Pan et al. (2015) developed an Iterative Linear Decision Rule (ILDR) to provide a
tractable approximation for a multi-period hydropower generation problem. This modi-
fication of the LDR, which enables the integration of non-linear objective functions
using piece-wise linearization, is considered a robust optimization approach. The re-
searchers applied ILDR to the single reservoir system of the Three Gorges Dam in China
and to the Shasta-Trinity multi-reservoir system in California. The results of this appli-
cation show that ILDR performance is similar to SSDP when implemented on the
original historical inflows and that it improves performance when tested on generated
inflows.

Stochastic optimization has been proven to reduce the potential risk of erroneous decisions
when compared with deterministic approaches. Celeste and Billib (2009) assessed the perfor-
mance of different stochastic methodologies to define optimal reservoir operations by com-
paring them with the solution of a deterministic model that assumed perfect knowledge of all
future monthly inflows. This allowed them to measure the performance of the stochastic
models relative to first-best operations.

Similar to the models previously developed by Kim et al. (2007), Eum et al. (2010) and
Macian-Sorribes et al. (2017), our study presents an optimization model that explicitly includes
the uncertainty related to water inflows into reservoirs. However, our model addresses the
highly nonlinear, nonconvex, and non-smooth constraints typically included in stochastic
optimization using two-stage linear programming. These features make our model capable
of including a variety of water supply objectives with predefined safety levels, allowing a
robust policy to be derived that, in the long term, would be suitable regardless of the inflow
scenario (Ermoliev et al. 2019). The contributions of this study to the literature are as follows:
(1) it includes the development of a novel two-stage linear stochastic optimization model that
incorporates performance indicators for multiple water management objectives such as water
supply, flood risk reduction, and environmental flow requirements; (2) it strengthens the
importance of considering stochastic inflows in the modeling of reservoir operations; and (3)
it derives a robust set of adaptable reservoir releases instead of the traditional end-of-month
reservoir storage operation.

3 Modeling Framework

3.1 Problem Formulation

This paper develops a stochastic optimization model to obtain a set of robust monthly reservoir
releases that maximize the economic benefits of water use. We begin by briefly describing a
traditional deterministic optimization formulation of reservoir management and then describe
the proposed stochastic formulation.
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A traditional deterministic approach considers a planning horizon of T periods divided into
smaller time steps t. Typical variables for deterministic reservoir operations are those in the
mass balance equation (Eq. 1), which states that the storage at a given time St is equal to the
storage in the previous time step St − 1 plus the inflows It minus the releases Rt and evaporation
losses Et, as follows:

St ¼ St−1 þ I t−Rt−Et ð1Þ
The objective function (Eq. 2) of this model maximizes the total benefits from water use F(R),
which are equal to the sum of the benefits of individual water users i, bit, as a function of
reservoir releases Rit in each time step t, subject to the water balance equation and other
physical reservoir constraints, as follows:

Max F Rð Þ ¼ ∑
i
∑
T

t¼1
bit Ritð Þ ð2Þ

This problem of reservoir management can be reformulated as a two-stage stochastic optimi-
zation model in which benefits, costs, and water demands are treated as parameters and inflows
are unknown and variable. The first stage decisions involve water releases from the reservoir
based on a whole-system expected deficit. In the second stage, once the deficit is known, it is
allocated among users (Fig. 1).

To allow the flow of excess water, a surplus variable is also integrated within the second
stage. The advantage of using this two-stage stochastic formulation is the ability to address
problems of input data uncertainty (Huang et al. 2012). Under the first stage, the model decides
without knowing exact information about the inflows and expected deficits or surpluses,
whereas in the second stage, the model hedges the deficit for optimal water supplies to the

Inputs/parameters
• Monthly water demands by user

• Benefits per unit of water supplied

• Physical reservoir characteristics

• Cost per unit of water deficit

• Other cost per unit above certain 

threshold (e.g., floods)

Two-stage stochastic 

optimization

model

Stochastic variables
• Inflows into system

• Evaporation losses

Outputs
• Monthly set of robust reservoir 

releases 

First stage
• Reservoir releases based on unknown 

inflows and whole-system expected 

deficit

Second stage
• Allocation of deficit among users 

given the now known whole-system 

deficit and release of surplus water if 

needed

Fig. 1 Stochastic optimization model workflow
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system considering the now disclosed variables. Ermolieva et al. (2016) implemented a similar
approach for flood mitigation and land use management. The objective function of the
proposed two-stage stochastic optimization model is depicted in Eq. 3, and its linearized form
is shown in Eqs. 4 to 9, as follows:

Max F Rmð Þ ¼ ∑
m
∑
i
bim � RRim

− ∑
S

s¼1
∑
m
∑
i
deiCim � psm �max 0; dim−RRimf g

− ∑
S

s¼1
∑
m
∑
i
suiCim � psm �max 0;RRim−dimf g

ð3Þ

The objective function of the model (Eq. 3) is to maximize net benefits from fulfilling water
demands and to minimize occurrences of scenario-specific water deficits max{0, dim − RRim}
and surpluses max{0,RRim − dim} to user i where dim defines water demand by user i in month
m, RRmi is water supplied to users i in month m, s denotes a water inflow scenario and S is the
number of scenarios (years with inflow records). bim denotes net benefits per unit of water
supplied to each user i (e.g., irrigated agriculture, urban water supply, environmental flows) in
different months m = 1,…, 12; deiCim and suiCim are the cost associated with expected deficits

∑
S

s¼1
psmmax 0; dim−RRimf g and surpluses ∑

S

s¼1
psmmax 0;RRim−dimf g for each user i, respectively.

deiCim characterizes, in a sense, the price of water (or losses associated with deficits) for water
user i in monthm, and suiCim identify losses associated with water oversupply such as flooding
or excess water to agriculture. psm is the probability of occurrence of inflow scenario s, which is
assumed to be equal to 1/S. A random scenario generator can be incorporated into the
optimization when a limited number of records are available or to include a broader range
of scenarios (Ermoliev and Wets 1988). In this proposed model, reservoir releases Rm and
water supplied to users RRmi are strategic first-stage decisions, which do not depend on a
specific inflow scenario. Scenario-specific water deficits and surpluses correspond to second-
stage decisions. Benefits from water supply are maximized, and costs/losses due to possible
deficits and surpluses are minimized. The optimal combination of the first- and the second-
stage decisions brings robustness into the resultant set of monthly reservoir releases.

The surplus max{0, dim − RRim} and deficit max{0,RRim − dim} variables are non-smooth
(due to max operations), and their use in the objective function would lead to a non-smooth
stochastic optimization problem (Ermoliev and Wets 1988). To linearize the objective function
(3), we introduce the terms deficits Desmi ¼ max 0;RRim−dimf g and surpluses
Susmi ¼ max 0; dim−RRimf g, and add constraints (8) and (9), making Desmi and Susmi stochastic
positive variables implicitly dependent on inflows (I sm) and giving the following linear
formulation:

Max F Rmð Þ ¼ ∑
m
∑
i
bim � RRim− ∑

S

s¼1
∑
m
∑
i
deiCim � psm � Desmi

− ∑
S

s¼1
∑
m
∑
i
suiCim � psm � Susmi

ð4Þ

subject to:
Rm ¼ ∑

I

i
RRim ð5Þ
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sm
s≤Ssm≤sm

s ð6Þ

Ssmþ1 ¼ Ssm þ I sm−Rm−Es
m−∑

i
Susmi þ ∑

i
Sesmi ð7Þ

Desmi≥dim−RRim ð8Þ

Susmi≥RRim−dim ð9Þ

The objective function (Eq. 4) is maximized subject to several constraints (Eqs. 5 to 9).
Equation 5 states that the sum of reservoir releases for each user must be equal to the total
release from the reservoir. Equation 6 defines the minimum and maximum reservoir storage
allowed in each month and year (i.e., scenario). Equation 7 includes the reservoir water
balance for the storage S in each time-step including Susmi and Desmi variables. The purpose
of the Susmi variable is to reduce the storage before months in which high flows are more
probable, and the purpose of the Desmi variable is to hold water before months that are prone to
deficits. By regulating the costs of surplus suiCim and deficit deiCim, which can also be
interpreted as risk weights, in the maximization of the objective function (4) under constraints
(5) to (9), it is possible to avoid surpluses and deficits with predefined probabilities. Equation 8
limits the deficits to the amount of maximum allocation for each user. Equation 9 quantifies the
surplus and allows high inflows to be released to avoid or reduce overtopping.

The two-stage formulation, as noted in the last two terms of the objective function (Eq. 4),
induces safety constraints on the water supply based on the probability of deficits and
surpluses. Such constraints are known as probability or chance constraints in stochastic
optimization, stability constraints in the insurance business, and constraints on the Value-at-
Risk (VaR) in financial applications (Ermoliev and Wets 1988). These constraints represent the
worst-case loss associated with a probability in set time period. In dealing with these highly
nonlinear, nonconvex, and often discontinuous safety constraints, we use connections with
minimization of so-called Conditional Value-at-Risk (CVaR) functions. CVaR represents the
expected losses if the worst-case threshold of loss is ever crossed and it is considered a more
consistent measure of risk than VaR. In our problem, where uncertainty originates from a finite
number of scenarios, the problem can be efficiently solved using linear programming
(Rockafellar and Uryasev 2000).

3.2 Performance Criteria

Four criteria were used to evaluate the performance of observed data and simulations under the
different model formulations: time-based reliability (Relt), volumetric reliability (Relv), resil-
ience (Res), and vulnerability (Vul) (Hashimoto et al. 1982). Time-based reliability is the
probability of fulfilling water demands over the period of simulation; volumetric reliability
quantifies the total volume of water supplied divided by the total water demand for each user
on each time step; resilience is a measure of the ability of the system to recover after a failure;
and vulnerability is a measure of the severity of a deficit. Moreover, we used the sustainability
index, referring to the geometric average of the four criteria for each water user, as an
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integrated measure of performance (Sandoval-Solis et al. 2011). A more detailed description of
the performance criteria is provided in the Online Supplementary Material.

4 Model Application to a Single Reservoir System

4.1 Description of the Study Area

We applied the proposed optimization model to a single reservoir system in the lower Rio
Conchos, the main tributary of the transboundary Rio Grande/Bravo (RGB). The Rio Conchos
is the main water source of the Big Bend Reach (BBR) of the RGB. The BBR is a region of
recognized binational importance, where water availability, water quality, flood risk, and the
preservation of recreational activities and of the aquatic and riparian ecosystems of the
Chihuahuan Desert are fundamentally important to the region’s welfare (Obama and
Calderón-Hinojosa 2010). This study extends over the Rio Conchos river channel from the
Luis L. León Reservoir (LLL) in Mexico to the confluence with the RGB mainstream in the
Presidio and Ojinaga (P-O) Valley (Figure SM1 in Online Supplementary Material). LLL has
three storage zones: inactive, conservation, and flood control. The inactive storage is 50 Mm3,
the top of conservation is 292.46 Mm3 (as it was originally designed for flood control), and the
total storage of the reservoir is 832 Mm3 (CONAGUA 2011). However, the historical
operation of LLL does not follow the nominal top of conservation, and the average historical
operation storage is between 580 Mm3 in the wet season and 700 Mm3 in the dry season (Lane
et al. 2015). LLL reservoir operations are based on the conflicting objectives of maximizing
the amount of available water in storage for supply purposes (e.g., irrigation, municipal) and
maximizing the floodwater storage capacity to reduce downstream flood damage, all while
meeting international delivery commitment under the 1944 treaty (IBWC 1944).

Several optimization models have been previously developed for this study area. Cañón
et al. (2009) created a two-stage non-linear optimization model to minimize water deficits to
users and maximize irrigated crop production. Their study considered a Drought Frequency
Index, which is a stochastic index that offers a mean return period of an integrated measure of a
drought severity and duration. Porse et al. (2015) developed a linear optimization model that
minimizes water deficit for different users. However, these two optimization models are not
stochastic, and their underlying objective functions are different from those considered here.

4.2 Model Input Data and Variables

The stochastic formulation presented in section 3 has been applied to the study area. GAMS
software was used for model development and scenario simulation (Brooke et al. 1988). A
detailed description of the empirical model equations and data specific to the study area can be
found in the Online Supplementary Material. Data include urban and agricultural water
demands below LLL in the Rio Conchos and downstream of P-O valley as well as the
economic benefits of water supplies and the cost of deficits to each user. Additional inputs
include monthly reservoir inflows from the Rio Conchos-Las Burras streamflow gauge from
1969 to 2010 and the estimated monthly evaporation.

The environmental flow (EF) requirements developed by the Rio Grande Expert Science
Team (2012) have here been adopted as another water demand in the system. These EF
requirements have been used in previous studies (Porse et al. 2015; Lane et al. 2015). We have
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also incorporated costs related to flood damage caused by monsoons coming from the Gulf of
Mexico and the Pacific (IBWC 1971; Sayto-Corona et al. 2017). Other input data are
reservoirs and flood infrastructure features, and international delivery commitment from
Mexico to the United States.

As the monthly time step of this model cannot adequately capture the performance of
operation policies with respect to flood events, a proxy of flood probability was considered. A
probability analysis was conducted to identify the historic monthly flow volume (550 Mm3 at
the Presidio gauge station) corresponding to daily flow values exceeding the design capacity of
the levee (1190 m3/s) (Lane et al. 2015). We used this value to identify the number of months
which are prone to flood events. During the 42-year period of historical records, there were 4
flood events representing a 10.5% flood probability. Flood probability in this study is defined
as the number of years when monthly flow volumes at Presidio are higher than 550 Mm3,
divided by the period of records.

The monthly economic value per unit of water delivered was estimated taking into account
agricultural revenue and water applied to agriculture from 1997 to 2013 according to irrigation
district statistics fromMexico (CONAGUA 1997–2013). When users do not receive promised
water, they have to either obtain it via more expensive alternatives (e.g., groundwater, treated
wastewater, or water transfer) or to modify their development plans (e.g., changing crop
patterns or reducing irrigated area). Associated penalties include the costs of water acquisition
from alternative sources and the cost of changing development plans. To quantify economic
benefits for agriculture, we used the economic values derived by Ortiz-Partida et al. (2016).

5 Results and Discussion

5.1 Reservoir Operation Under Alternative Model Formulations

Based on comparisons between observed and simulated reservoir storage and flow at Presidio
gauge, the deterministic model (with perfect knowledge of future inflows) was able to avoid
some of the floods (Fig. 2b) compared to historical observations (Fig. 2a). However, given the
limited storage capacity and the periodic intensity of reservoir inflows, some flood events were
unavoidable. Under the stochastic model, storage was characterized by releases that decreased
water levels every summer during the monsoon season (August and September) to reduce
costly future flood events in spite of long-term deficits (Fig. 2c). This model resulted in highly
variable storage from year to year because it calculated storage in each year independently
instead of carrying over the storage from the previous year as in the deterministic model.

The stochastic model was capable of reducing the intensity and frequency of flood events
compared to historical observations. Historically, there were four flood events in P-O valley in
the years 1978, 1990, 1991, and 2008 (Fig. 2d). Two of these flood events were avoided under
both the deterministic and stochastic models and, when floods were unavoidable, the magni-
tude of the events was reduced (Fig. 2e, f). Consequently, the deterministic and stochastic
models could, respectively, reduce the historical economic damage caused by flood events
(1.17 million USD/year) by 0.5 and 0.4 million USD per year.

Figure 3 depicts observed and simulated reservoir releases and system deficits. Historical
water deliveries from LLL were for the most part inefficient because water was released at
times when it was not needed, probably due to a conservative flood management operation.
Therefore, releases were larger under the historical observation, with larger deficits occurring
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due to frequent smaller releases. For example, over the period from 1979 to 1987 (Fig. 3a-
inset), a considerable number of releases were above the water demand. Under the stochastic
model, expected deficits were often overcome when water was released to avoid overtopping.
Such releases were robust because they minimized losses from deficits and surpluses within
the system. An example is the drought period from 1993 to 2006 when deficits were even
higher under the deterministic model (Fig. 3e, f). This is possible because the deterministic
model considers only perfect knowledge of inflow conditions for 1 month in advance, while
the stochastic model considers a wide range of possible hydroclimatic events.

Results from Fig. 3 show that for the deterministic and stochastic models, all the deficits are
allocated to the environment because environmental flows have lower priority. To reduce water
deficits for the environment, the deficit could be shared across users. Previous research shows
that economic benefits from improved environmental outcomes such as reduced spending on
the reintroduction of silvery minnow, an endangered regional fish species, may outweigh the
costs of increased deficits to other users (Ortiz-Partida et al. 2016).

Figure 4 presents the economic outcomes for the different uses under the historical
observation and the stochastic and deterministic models. Total net benefits from water use in
the study area, including agricultural and environmental benefits and flood costs, amount to
5.5 million USD/year. These benefits could increase substantially under both the deterministic
(22.9 million USD/year) and stochastic (19.2 million USD/year) models. Most of these
increases in the two models originate from the avoided deficits in irrigated agriculture. Given
that the three models consider the same water availability (same reservoir inflows), the
deterministic and stochastic models show that timing of reservoir releases is of great impor-
tance to reduce deficits. Irrigated agriculture could achieve higher benefits in the deterministic

Fig. 2 Historical observation, deterministic, and stochastic reservoir storage and flow at Presidio
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(18 million USD/year) and stochastic (18.4 million USD/year) models, when compared to
historical operations (6.7 million USD/year).

In relation to the environmental demand, the deterministic model, in particular, shows
significant improvements in environmental benefits compared to historical observations be-
cause, in general, there is sufficient water to sustain human water demands even while
increasing environmental water releases. In the stochastic model, environmental benefits also
increase compared to historical observations, although less so than in the deterministic model.

Fig. 3 Historical observation, deterministic, and stochastic reservoir releases and system deficits. Inset is from
1979 to 1987

Fig. 4 Comparison between economic benefits and costs under the historical observation, and the deterministic
and stochastic models
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It is, however, important to highlight the performance of the stochastic model during
prolonged periods of drought (1993 to 2006), when its robust feature reduces the magnitude
of deficits even in comparison with the deterministic model. Results from Fig. 4 indicate that
the stochastic model could considerably improve the observed economic outcomes and
achieve almost the same outcomes simulated by the deterministic model. These results
highlight the possibility of enhancing regional economic benefits, even in the absence of
reliable climate forecasts through improved reservoir operations.

5.2 Performance of Reservoir Operations

Across the calculated performance criteria, the stochastic model improves the system perfor-
mance considerably with respect to historical operations (Table 1). Such results indicate that it
is possible to increase the economic benefits of reservoir management even with uncertain
inflows and accounting for environmental water requirements. Historical LLL operations were
conservative, making the system unreliable and vulnerable. The deterministic model simula-
tions demonstrate that water availability in the system is enough to meet all demands within
the Rio Conchos and improves supply to downstream users and environmental flow
allocations.

Environmental water allocation is improved in terms of reliability in timing and volume,
particularly under the deterministic model. Given, however, the high vulnerability and low
resilience of environmental water allocation, the sustainability index for environmental flows
is similar to the historical observation. It is important to note that the geographic location of the
environmental flow requirements is far downstream of the reservoir and we did not account for
gains and losses of water within the streamflow gauges.

This study highlights the need to consider hydroclimatic variability when designing water
management policies. The RGB is an example of a basin with pronounced water resource
variability over time. In the Rio Conchos, monthly flow fluctuates from around 2 Mm3 to more
than 1800 Mm3. Many other basins around the world show similar hydroclimatic variability,

Table 1 Comparison of performance of reservoir operation of the historical observation and the deterministic
and stochastic models using the different performance criteria

Agricultural area 1
(%)

Agricultural area 2
(%)

Municipal
(%)

Downstream demands
(%)

EF targets
(%)

Historic Relt 11.0 69.0 11.0 13.0 22.0
RelV 39.0 89.0 39.0 42.0 81.0
Res 4.0 35.0 4.0 4.0 16.0
Vul 68.0 36.0 68.0 67.0 24.0
SI 20.0 60.0 20.0 20.0 46.0

Deterministic Relt 99.2 97.0 100.0 92.9 72.2
RelV 99.6 98.4 100.0 94.9 100.0
Res 100.0 100.0 100.0 22.2 15.0
Vul 0.0 0.1 0.0 0.4 49.5
SI 99.7 98.8 100.0 66.4 48.4

Stochastic Relt 100.0 100.0 100.0 100.0 49.6
RelV 100.0 100.0 100.0 100.0 100.0
Res 100.0 100.0 100.0 100.0 29.1
Vul 0.0 0.0 0.0 0.0 64.9
SI 100.0 100.0 100.0 100.0 47.5
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and this needs to be considered when reservoir operation policies are being designed.
Moreover, the results of this study also demonstrate the potential to improve water resource
management at a relatively low cost by evaluating and adjusting the current infrastructure
operation. Changing system operations does not generally involve costly infrastructure pro-
jects and considering the environment has the potential to reduce the cost of restoration
activities.

While an increasing number of studies now consider environmental objectives along-
side more conventional water demands (Momblanch et al. 2016), challenges remain as to
how best to balance these objectives. It has been established that river ecosystems need
variability to support different ecosystem functions (Poff et al. 1997). Therefore, in
addition to the selected goal of human water supply, this study considered the environment
as a demand in the system rather than a minimum flow constraint. This decision acknowl-
edges that the environment requires variable hydrology and also lays the groundwork for
achieving greater synergies between environmental and other uses by providing variable
flows in the channel when there is sufficient water.

6 Conclusions

Unreliable water supply, unmet environmental flow requirements, and flood events are
often a consequence of uncertainty and limited knowledge about reservoir inflows.
Different approaches have been considered in the literature to identify reservoir releases
with respect to time and volume that optimize the objectives of various users, commonly
including agriculture, industry, urban water supply, hydropower, flood control, and recre-
ation. The stochastic optimization model proposed in this study presents a risk-informed
decision support system for the design of water resource management options to address
water scarcity and variability challenges. A novel two-stage stochastic optimization
formulation is shown to develop robust operations for a multipurpose reservoir. Results
indicate that integrating hydrologic variability into optimization models enables a broader
planning spectrum and allows managers to prepare for low probability but costly events.
The stochastic model generally outperforms historical reservoir management and performs
similarly to the deterministic model with perfect knowledge.

A certain number of simplifying assumptions were used in defining the stochastic
optimization model. This model uses a monthly time step that simplifies flood and
ecohydrological processes (e.g., inundation plain and flow relationships). Future work
should focus on downscaling the model to daily or hourly operations. The model may also
benefit from including variability in water demands and using more reliable estimates of
economic parameters. Current estimates are considered linear, but costs may be exponen-
tial as deficits increase. Lastly, the model does not include water quality parameters, and
these should be considered for a complete environmental assessment.

Despite all these limitations, the proposed optimization model can be particularly useful for
improving operations under increasing hydroclimatic uncertainty and more intense and fre-
quent droughts and floods with the impending climate change. Thousands of reservoirs
worldwide remain sub-optimally managed, and operation policies need to continue to be
improved to reduce the often high social and environmental costs of reservoir management
and to identify synergies between human and environmental water management objectives.
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