
 i 

Understanding Hydrologic Alteration of Mediterranean-Climate Streams Using a  
Functional Flows Approach 

 
By 

 
NOELLE KATHLEEN PATTERSON 

DISSERTATION 
 

Submitted in partial satisfaction of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

Hydrologic Sciences 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

         
Samuel Sandoval Solis, Chair 

 
         

Belize A. Lane 
 

         
Gregory B. Pasternack 

 
         

Xiaoli Dong 
 

Committee in Charge 
 

2022 
 

  



  ii 

 

Abstract 

 

 

Rivers have a fundamental importance to human civilization and are considered the 

primary source of renewable freshwater supply for societies worldwide. Human prosperity 

depends heavily on surface water and the groundwater it replenishes, but this growth often 

comes with a heavy cost to river health. Rivers worldwide and particularly in arid climates have 

experienced profound levels of human alterations, particularly through damming, that affect flow 

patterns, channel form, and species composition. Functional flows theory offers a promising 

method to characterize ecologically-important aspects of flow and how changes to flow patterns 

may affect ecosystems. The goal of this dissertation is to quantify and understand hydrologic 

alteration of rivers and its ecological effects using a functional flows approach. This work 

validates functional flows as an effective strategy for ecological streamflow analysis with 

evidence that they can be used to differentiate California’s natural flow regimes, quantify 

streamflow response to climate change, and reveal the links between flow management and 

riparian forest health. Chapter 1 describes creation of a novel tool to quantify functional flow 

metrics for Mediterranean streamflow patterns using time series analysis methods. Chapter 2 

characterizes climate-caused changes to streamflow in snowmelt-dependent regions of 

California, highlighting the importance of both temperature increase on functional flow change 

and human emissions levels on potential outcomes. Chapter 3 describes an ecohydrologic field 
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study linking riparian cottonwood growth to functional flows and offers promising evidence that 

environmental flows can lead to measurable improvement in riparian forest productivity. This 

dissertation advances river science through the creation and implementation of new tools that can 

be used to balance human and ecological needs of streamflow.  
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Introduction 

 

Background and Motivation 

Rivers act as arteries of the landscape, sustaining freshwater-dependent ecosystems and 

many scales of geomorphic work as they transport water and sediment from headwater slopes to 

oceans and sinks. Riparian and instream habitats support high diversity and provide many 

ecosystem services, such as water supply, nutrient cycling, recreation, and maintenance of 

floodplain water tables (Postel and Richter 2003). Rivers also have a fundamental importance to 

human civilization and culture, and are considered the primary source of renewable freshwater 

supply for societies worldwide (UNESCO 2009; Vorosmarty et al. 2005). Growth of populations 

and economies depends heavily on surface water and the groundwater it replenishes, but this 

growth often comes with a heavy cost to river health (Grill et al. 2019; Vorosmarty et al. 2010). 

Rivers are naturally dynamic systems, integrating rainfall and snowmelt into a terrestrial 

response representing surface runoff characteristic of a watershed. In naturally variable climates 

such as Mediterranean climates with distinct wet and dry periods, rivers are especially dynamic 

(Kondolf, Podolak, and Grantham 2013). Freshwater species living in and around these dynamic 

systems are adapted to seasons of high and low streamflow through their behavior and life 

history (Gasith and Resh 1999; Lytle and Poff 2004). Human societies today and historically 

have sought to gain control over rivers, using technology such as dams, diversions, and canals to 

tame unpredictable rivers into conduits of stable flow (Grill et al. 2019; Postel and Richter 2003). 
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In many cases dams have allowed human populations to flourish and grow, by providing 

predictable access to surface water and controlling floods. As a result of intensive river damming 

over the past century, 60% of the world’s large rivers are now dammed (Grill et al. 2019). 

Consequently, the effects of river impoundments have been felt at a global scale. Des (2012) 

estimates that the influence of dams is large enough to significantly influence global sediment 

budgets by the trapping of sediment behind dams. Increasingly, free-flowing rivers are a 

threatened component of the landscape, found most abundantly in high-elevation headwaters 

regions with low human populations.  

The ecological effects of altering natural flow regimes are widespread (S. E. Bunn and 

Arthington 2002; Palmer and Ruhi 2019; Vorosmarty et al. 2010). More than 50% of the world’s 

rivers are reported to have suffered declines in fish biodiversity, with much of this damage 

concentrated in temperate climate rivers (Su et al. 2021). Riparian forests support high 

biodiversity, but their reliance on natural flow patterns has caused significant decline of riparian 

ecosystems (Shafroth et al. 2017). Apart from disruption of flow patterns, dams also create 

disturbances in sediment and chemical regimes, which come at a high cost to freshwater 

biodiversity. In the U.S. and Australia for example, cold outflows from the bottom of dams 

introduce water at temperatures below the preferred threshold of native fish, favoring the 

proliferation of invasive fish species (Sherman et al. 2007; Zarri et al. 2019). The physical barrier 

of a dam also prevents passage, disrupting fish spawning and survival. Even where fish passage 

facilities are constructed, fish fitness may be reduced following passage over dams (Burnett et al. 

2017).   

Rivers are vastly complex systems integrating water chemistry, sediment fluxes, 

hydraulics, nutrient cycling, biotic interactions, and other processes (N Leroy Poff and Ward 
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1990; Wohl et al. 2015). While streamflow analysis alone cannot guarantee understanding of all 

these facets of a river, it serves well as a controlling variable of river processes (Poff et al. 1997). 

Changes to natural streamflow patterns are often associated with alteration of these other 

processes (Ahearn et al. 2004; Yarnell et al. 2015). Much like the pulse of a living organism, the 

flowing pulse of a stream can indicate the well-being of its component parts.   

Functional flows theory offers a promising method to characterize ecologically-important 

aspects of flow and how changes to these patterns may affect ecosystems. Functional flows refer 

to sub-annual aspects of the flow regime that support key ecological, geomorphic, or 

biogeochemical processes in river systems (Escobar-Arias and Pasternack 2010; Yarnell et al. 

2015). For rainfall-snowmelt flow regimes typical of California, five functional flow components 

have been identified that each provide distinct ecological functions, further described in the 

following chapters (Yarnell et al. 2020). These functional flows can be quantified with metrics 

describing the magnitude, timing, duration, and rate of change of each functional flow 

component (Poff et al. 1997). Functional flows can serve as the building blocks of an 

environmental flows program since they target aspects of flow most critical for ecosystem needs, 

which can prioritize limited flow in impacted basins. Functional flows are currently being used 

to guide environmental flow efforts across the state of California (Carlisle et al. 2017) and in the 

Rio Grande Basin of the southwestern U.S. The three studies in this dissertation rest on the 

concept of functional flows, and using them to understand alterations to natural flow regimes.  

The ability of societies to thrive in the next century hinges on effective management of 

water resources in a changing world. Climate change has been associated with increasingly 

variable weather, resulting in less secure surface water resources in some regions such as the 

Western U.S. (Dettinger 2016). Warming temperatures cause a higher fraction of precipitation to 
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fall as rain instead of snow, reducing the amount of slow-releasing snowmelt historically relied 

on in regions such as California or the Front Range in Colorado (Lundquist et al. 2009; Pepin et 

al. 2015). On top of this, human population pressures already strain water resources in many 

parts of the world (Donnenfeld et al. 2018, Martinez et al. 2015, Ortiz-Partida et al. 2019). 

Effective solutions in water resources must consider river management strategies that preserve 

essential ecological functioning in the context of human need and climate change. 

 

Research Objectives  

 

The goal of this dissertation is to quantify and understand hydrologic alteration of rivers 

and its ecologic effects by characterizing streamflow, using a functional flows approach. The 

dissertation is organized into three chapters of research, addressing different angles of the 

overarching research objective. Each chapter stands alone as an independent study, so that each 

chapter includes a separate abstract, introduction, methodology, results, discussion, and 

conclusion.  

Chapter 1 describes creation of a novel tool to quantify functional flow metrics for 

Mediterranean streamflow patterns using time series analysis methods of iterative smoothing, 

feature detection, and windowing. This tool is then tested using highly variable natural flow 

regimes of California, U.S., along with a quantitative assessment of error. An important 

contribution of this work is the ability to identify the timing of seasonal components of flow 

unique to each water year in a time series, an ecologically-important yet previously overlooked 

component of streamflow analysis. The following two chapters use the tool developed in Chapter 
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1 to perform state-of-the-art time series analysis on streamflow, with particular focus on climate 

change and ecological response to streamflow.  

Chapter 2 of this dissertation seeks to characterize climate-caused changes in streamflow 

in snowmelt-dependent regions of California, using functional flows to quantify change. Climate 

change will compound water resources challenges in the western U.S., where freshwater 

ecosystems are already strained due to human pressure (Dettinger 2016), making this research 

subject especially timely.  

Chapter 3 describes an ecohydrologic field study linking riparian cottonwood growth to 

functional flows, with a particular emphasis on streamflow alterations caused by river diversions. 

A fundamental assumption of functional flows theory is that the target functional flow metrics 

have real links to aquatic ecosystem functioning. Chapter 3 helps confirm these flow-ecology 

relationships while revealing the response of cottonwood forests to streamflow in a river system 

with a legacy of heavy management.  

In summary, this dissertation tackles applied river science through creation of a 

functional flows analysis tool, followed by applications related to climate change and 

ecohydrology. Throughout this research is a recognition of both human and ecological needs of 

surface water, and the balance that must be achieved to meet both. It is a grand challenge, and 

this dissertation advances progress towards this goal through the creation and implementation of 

new tools for quantitative river science.  
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Chapter 1   

 

 

A hydrologic feature detection algorithm to 

quantify seasonal components of  flow 

regimes1 

 

 

1.1 Abstract 

Seasonal flow transitions between wet and dry conditions are a primary control on river 

conditions, including biogeochemical processes and aquatic life-history strategies. In regions like 

California with highly seasonal flow patterns and immense interannual variability, a rigorous 

 

1 This chapter has been published: Patterson, N. K., Lane, B. A., Sandoval-Solis, S., Pasternack, G. B., Yarnell, S. 

M., & Qiu, Y. (2020). A hydrologic feature detection algorithm to quantify seasonal components of flow regimes. 

Journal of Hydrology, 585, 1–12. https://doi.org/10.1016/j.jhydrol.2020.124787 
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approach is needed to accurately identify and quantify seasonal flow transitions from the annual 

flow regime. Drawing on signal processing theory, this study develops a transferable approach to 

detect the timing of seasonal flow transitions from daily streamflow time series using an iterative 

smoothing, feature detection, and windowing methodology. The approach is shown to accurately 

identify and characterize seasonal flows across highly variable natural flow regimes in 

California. A quantitative error assessment validated the accuracy of the approach, finding that 

inaccuracies in seasonal timing identification did not exceed 10%, with infrequent exceptions. 

Results for seasonal timing were also used to highlight the statistically distinct timing found 

across streams with varying climatic drivers in California. The proposed approach improves 

understanding of spatial and temporal trends in hydrologic processes and climate conditions 

across complex landscapes and informs environmental water management efforts by delineating 

timing of seasonal flows. 

 

1.2 Introduction 

Streams and rivers in semi-arid/Mediterranean climates are physically, chemically, and 

biologically driven by predictable, seasonal periods of wet and dry conditions over an annual 

cycle (Gasith and Resh, 1999). Seasonal flow regimes support predictable river processes such as 

disturbance regimes (Rood et al. 2005), seasonal habitat provision (Aadland 1993; Booker and 

Acreman 2007; Jacobson 2013), and native species life-history cues (Yarnell et al., 2010). While 

streamflow characteristics including magnitude, duration, frequency, and rate of change are 

useful for describing components of the flow regime (Poff et al., 1997), the timing of seasonal 

flow transitions within the annual flow regime is particularly important for understanding 
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seasonally-adapted ecological processes such as migration, spawning, or vegetation recruitment  

(Cambray 1991; Greet, Webb, and Cousens 2011; N. Leroy Poff and Zimmerman 2010). It is 

critical to identify these distinct wet and dry conditions and when they occur across different 

flow regimes to improve understanding of physical climate and watershed controls on these 

seasonal transitions and their sensitivity to change. 

                Numerical descriptors of the flow regime, known as flow metrics, are routinely 

quantified from daily streamflow time series to link streamflow patterns to river processes 

(Buttle 2011; N. LeRoy Poff and Ward 1989) and biological response (Mazor et al. 2017; Olden 

and Poff 2003). Existing flow metrics used to identify and quantify the timing of seasonal flow 

transitions are limited, especially across large regions and in hydrologically variable settings. 

These measurements of timing are often simplified by calculating flow metrics within 

predetermined timing windows instead of identifying the occurrence of seasonal transitions and 

key events based on annual flow patterns. The Hydroecological Integrity Assessment Process 

(Henriksen et al. 2006) and the Indicators of Hydrologic Alteration (Richter et al. 1996) 

incorporate timing through calculations such as monthly average flows or the date of annual 

minimum and maximum flow. However, in variable flow regimes such as flashy rain-sourced 

streams, the timing of seasonal flow transitions varies significantly between water years and 

hydroclimatic settings (Lane et al., 2018). This wide inter-annual variability suggests that metrics 

describing a particular aspect of seasonal flow, such as dry season flow magnitude, cannot be 

accurately quantified based on the same months in each water year. Calculation of the annual 

maximum or minimum similarly may oversimplify understanding of seasonal flow components, 

because these calculations do not account for annual or seasonal patterns of flow or events other 

than the most extreme conditions (Déry et al. 2009). 
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To better quantify flow regimes based on variable seasonal patterns, signal processing 

techniques can be used to identify sub-annual hydrologic patterns from daily flow time series. 

Signal processing theory provides well-established techniques, such as data smoothing, peak 

detection, and time windowing, that have been applied in hydrology (Kusche et al. 2009; Mann 

2004) and can be used to detect features from a time series of daily streamflow data. Time series 

smoothing is used to enhance certain frequencies (i.e., the signal) while attenuating others (i.e., 

the noise), and many smoothing techniques are available such as moving average, exponential 

moving average, empirical mode decomposition, regression smoothing (e.g. 

LOESS, (Cleaveland and Loader 1996)), wavelet, and splines (Janert 2010). Smoothing 

functions generate fitted curves to time series data that emphasize different frequency signals 

depending on the function and level of smoothing (Pollock 1999). Feature detection is used to 

extract peaks or valleys of interest from the smoothed data and can depend on attributes such as 

magnitude or slope (Schneider 2011; Scholkmann, Boss, and Wolf 2012). Dynamic windowing 

around a detected feature constrains further analysis to a particular period of interest and allows 

for increased resolution of subsequent analysis (Palshikar 2009). 

In previous work, signal processing techniques have been applied to hydrologic time 

series for applications such as detecting long-term trends (Letcher et al. 2001), modeling 

hydrologic processes (Zhang et al. 2016), and predicting future trends (Adamowski and Sun 

2010; Cannas et al. 2006). Common techniques such as harmonic analysis using Fourier or 

wavelet transform methods can be effective in analyzing hydrologic time series characteristics, 

such as periodicity, trends, coherence and cross-phase among deriving and response variables, or 

complexity determined by wavelet entropy (Pasternack and Hinnov 2003; Sang 2013). 

Additionally, many techniques have been developed to identify baseflow recession (Hall 1968); 
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recent attempts include identifying a consecutive number of days of negative slope in the 

hydrograph (Bart and Hope 2014), combining requirements of negative slope with a percentile-

based magnitude threshold (Sawaske and Freyberg 2014), or automatic identification of 

recession curves based on parameters balancing accuracy and coverage (Smith and Schwartz 

2017). While some methods share similarities with components of the proposed method, to the 

authors’ knowledge there has not yet been a method developed to automatically isolate and 

quantify all major seasonal flow transitions from annual streamflow time series. 

To identify ecologically significant flow transitions from the annual hydrograph, this 

study applied signal processing methods to identify functional flows found in the highly seasonal 

Mediterranean streams of California, USA. Functional flows refer to sub-annual aspects of the 

flow regime that support key ecological, geomorphic or biogeochemical processes in riverine 

systems (Escobar-Arias and Pasternack, 2010, Yarnell et al., 2015). Yarnell et al. 

(2015) aggregated flow ecology literature to identify four functional flow components relevant to 

Mediterranean streams with a distinct wet and dry season: wet-season initiation flows, peak 

magnitude flows, spring recession flows, and dry-season low flows. Building on those efforts 

and more recent work highlighting key functional flows specific to California (Yarnell et al., 

2020), this study identifies the timing of four functional flow components applicable to 

California’s natural streamflow regimes: fall pulse flow, wet season flow (encompassing both 

wet season baseflow and peak flow conditions), spring recession, and dry season baseflow 

(Figure 1-1). Once the timings of functional flow transitions are identified from the annual 

hydrograph, each functional flow component can be further quantified using additional flow 

metrics such as magnitude, timing, frequency, duration, or rate of change, and can be used to 

design functional flow regimes in managed river systems (Yarnell et al., 2020). 
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Figure 1-1. Identification of the start timing of four functional flows identified for California (Yarnell et al., 2020) 

using the proposed signal processing algorithm. The timing of flow transitions identified by the algorithm are 

marked with arrows. Hydrographs indicate the 10th, 25th, 50th, 75th, and 90th percentiles of flow in a mixed rain-

snow river system (modified from Yarnell et al., 2020). A water year in California is defined as October 1 to 

September 30. 

 

Drawing on signal processing theory, this study develops an algorithm in the open-source Python 

programming language to calculate the timing of seasonal flow transitions from daily flow time 

series, allowing for improved characterization of seasonal flows. This research addresses the 

following questions: (1) is it possible to automatically identify timing of seasonal streamflow 

components from annual hydrographs, and if so what is the level of error?; and (2) does the 

timing of seasonal flow components calculated through this study reveal distinctions among 

streams with varying climatic drivers? Using data from the highly seasonal streams of California 
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as a testbed, this study assesses the accuracy and limitations of the algorithm for quantifying 

functional flows across a wide range of natural flow regimes and climate conditions, including 

flow regimes exhibiting snowmelt, rain, or mixed rain and snowmelt signatures. To further 

achieve confidence in the results, algorithm outputs are analyzed in the context of California 

hydrology and tested for the extent that results align with expectations for regional hydrologic 

regimes. 

 

1.3 Methods 

The study design describes development, calibration, and performance assessment of the 

algorithm for detecting the timing of functional flow transitions from daily streamflow time 

series, with algorithm steps summarized in Figure 1-4. Six general steps of the SFDA use data 

smoothing, windowing, and feature detection to identify seasonal flow transitions from daily 

streamflow data. 

 

1.3.1 Study Region 

California has a Mediterranean climate with pronounced wet and dry seasons, as well as 

high interannual variability and spatial heterogeneity (Dettinger et al. 2011; Liu et al. 2018) . 

Much of this variability stems from California’s wide latitudinal extent (800 km) and 

physiographic diversity, with multiple mountain ranges and valleys of different sizes, shapes, 

and relief (Abatzoglou, Redmond, and Edwards 2009; Ladochy, Medina, and Patzert 2007). 

California rainfall is characterized by the capability of a limited number of high intensity storm 

events to contribute to the majority of annual precipitation; Dettinger et al. (2011) found that 20–
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50% of California’s long-term rainfall average derives from these high precipitation storm 

events. California’s rivers and streams reflect the state’s climatic and physiographic diversity, 

ranging from small, intermittent streams in the southwest deserts to larger snowmelt-fed rivers 

draining the western slopes of the Sierra Nevada mountain range (Lane et al. 2018; Mount 1995). 

For this study, nine natural hydrologic classes previously identified for California 

by Lane et al. (2018) were aggregated into three dominant stream types recognized throughout 

the state (Mount, 1995): snowmelt-, rainfall-, and mixed snowmelt and rain-sourced streams 

(Figure 1-2). Snowmelt-sourced flow regimes are largely controlled by the timing and rate of 

snowmelt, which are driven by seasonal patterns of precipitation and temperature. Rain-sourced 

flow regimes are controlled by the intensity of winter rainfall and characteristics of individual 

storm events. Mixed-source streams experience both rain-driven flows in the winter and a 

snowmelt pulse in the spring, or they occur in large drainages that receive both snowmelt and 

rainfall contributions from upstream. 
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Figure 1-2. The three dominant stream types in California based on aggregated natural hydrologic classes developed 

by Lane et al. (2018): snowmelt (yellow), mixed snow and rain (green), and rain (blue). Reference streamflow gages 

used in this study are shown as circles, and the number of total water years of data in each stream type are shown. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

1.3.2 Data 

Streamflow data used for this analysis come from 223 gage stations with unimpaired or 

naturalized daily streamflow records in California (refer to Kennard et al. (2010) for definitions 

of unimpaired and naturalized streamflow) (Figure 1-2). Unimpaired gage data was sourced from 



 

10 

the dataset compiled by Zimmerman et al. (2017), who followed a 3-step protocol to obtain 

unimpaired daily streamflow. Their process designated gage stations as unimpaired based on: (1) 

designation as a “least disturbed” site from a U.S. Geological Survey database of watershed 

attributes (Falcone et al. 2010) (2) status of unimpairment based on annual gage station reports 

and appearance of natural conditions from satellite imagery, and (3) historical flow records that 

pre-date anthropogenic disturbance such as dams and urbanization. Seven gages with simulated 

unimpaired (i.e., naturalized) daily streamflow data were also added to the dataset to cover the 

Central Valley region of California (CDWR 2007), which was otherwise poorly represented by 

unimpaired gage stations. A final screening of the annual hydrographs of the resulting dataset 

was performed, and several gages were removed from the analysis that had flow patterns 

appearing irregular, impaired, or too low to exhibit seasonal patterns. The resulting dataset of 

223 reference gages includes periods of record as early as 1891 and as recent as 2015, with an 

average period of record of 34 years and a range of 6 to 65 years. 

 

1.3.3 Seasonal flow detection algorithm development 

The following sections provide the theory and rationale for the Seasonal Flow Detection 

Algorithm (SFDA), explain the signal processing methods applied, and describe individual 

calculation steps. Additional description of signal processing methods is described in the 

Supplemental Materials.  
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1.3.3.1 Data Smoothing 

Data smoothing is a type of filtering in which low-frequency components are retained 

while high-frequency components are attenuated, enabling detection of features of interest at 

different frequencies or time-scales(Press and Teukolsky 1990) . Common finite-difference 

smoothing techniques include simple running averages, weighted moving averages, and 

exponential filters (Janert, 2010). In this study, a Gaussian weighted moving average filter was 

used to generate a smoothed time series using the function gaussian_filter1d from the SciPy 

Image Processing package (Verveer 2003) in Python. This smoothing method was selected for its 

ability to retain local maxima in the output function, while avoiding abrupt distortions in the 

filtered data. The Gaussian filter sets the weighting factors of the smoothing window 

wj according to a Gaussian normal distribution 
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such that any new streamflow observation that enters the smoothing window is only gradually 

added to the moving average and then gradually removed. The standard deviation of the 

Gaussian function (σ) dictates the width of the distribution and consequently the degree of 

smoothing applied. In this study, low and high levels of streamflow data smoothing were 

associated with σ < 5 and σ > 8, respectively. For example, a daily streamflow time series 

smoothed with a high standard deviation Gaussian filter (σ = 12, Figure 1-3) will dampen daily 

to weekly hydrologic variability while preserving major seasonal patterns. Alternatively, a low 

standard deviation Gaussian filter (σ = 4, Figure 1-3) will preserve storm events occurring on 
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weekly scales. High levels of smoothing are often applied first in the algorithm to identify coarse 

resolution temporal patterns such as the distinction between the annual wet and dry season, while 

removing the signal noise caused by individual storm events. Increasingly lower levels of 

smoothing are then applied to identify hydrologic features on finer temporal scales. 

 

Figure 1-3. Daily streamflow time series (black) plotted for one water year (Oct. 1–Sept. 30) with two levels of 

filters using Gaussian weighted moving averages with different σ parameter values. 

 

1.3.3.2 Splines 

Splines are functions constructed from segments of polynomials between each time series 

observation that are constrained to be smooth at the junctions (Letcher et al. 2001). Splines, 

which are used in the SFDA for derivative estimation of smoothed streamflow, have been shown 

to generate nearly optimal derivative estimates of noisy data such as streamflow time series due 

to low interpolation error (Craven and Wahba 1979; Ragozin 1983; Thomas, Vogel, and 
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Famiglietti 2015). The SFDA employs a cubic spline function (three degrees of freedom) for 

derivative estimates, which is generally considered an optimal interpolation function for large 

time series (Carter and Signorino 2010; Kimball 1976; Wahba 1978). For further explanation on 

spline fitting, refer to Hastie and Tibshirani (1990). In this study, derivative estimation using a 

cubic spline was performed on smoothed and windowed streamflow time series using the one-

dimensional univariate spline fitting function available from the SciPy library in Python (Jones, 

Oliphant, and Peterson 2001). 

 

1.3.4 Seasonal flow detection algorithm (SFDA) general steps 

The SFDA consists of six general steps used to detect seasonal flow transitions, although 

some applications may require either a subset of these steps or multiple iterations (Figure 1-4). 

Steps are applied to each water year in a dataset, which in California is defined as October 1 to 

September 30. Step 1 (Figure 1-4.a): A high standard deviation Gaussian filter (G1) is applied to 

the observed daily streamflow time series to detect dominant peaks, valleys, or trends in the 

annual hydrograph. Depending on the level of smoothing, different frequency patterns (e.g., 

seasonal, sub-seasonal) are attenuated or left intact. Step 2 (Figure 1-4.b): A hydrologic feature 

of interest is identified from G1, such as annual peak flow. Step 3 (Figure 1-4.b): A localized 

search window is set around the feature of interest to constrain subsequent analysis to a 

hydrologically relevant period (e.g., 30 days before and after the feature of interest). Step 4 

(Figure 1-4.c): Within the search window, a low standard deviation Gaussian filter (G2) is 

applied to the observed daily time series to extract high-resolution hydrologic patterns (e.g., 

individual storm events). Step 5 (Figure 1-4.d): A spline curve is fitted to smoothed data G2, and 
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the derivative is taken to identify the slope of the hydrograph (S1′). Step 6 (Figure 1-4.d): A 

feature of interest is characterized in one of two ways: i) directly from G2 using relevant flow 

characteristics (i.e. magnitude), or ii) using the derivative of the spline curve (S1′) to detect peaks 

or valleys of interest based on slope or sign change (triangles represent peak features of interest, 

and the black diamond is the final selected feature). 
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Figure 1-4. Six general steps of the SFDA use data smoothing, windowing, and feature detection to identify seasonal 

flow transitions from daily streamflow data. 

           The SFDA steps are iterative and can be repeated multiple times to consistently and 

accurately identify flow transitions across water years and stream types. For example, the 

calculation of spring recession requires three iterations of smoothing and feature detection, while 

the calculation for dry season start timing only requires one iteration. The parameter values (e.g., 

smoothing parameter σ, window size, or magnitude thresholds) can be adjusted to suit the needs 

of particular flow regimes or hydrologic features of interest. For example, in flashy rain-driven 

streams the start of the dry season is generally indicated by the last significant storm event of the 
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water year, which can be found using a low standard deviation Gaussian filter that closely fits 

daily streamflow data. Meanwhile, the start of the dry season in a snowmelt-driven stream may 

be better identified by the general trend of flow reduction representing catchment drainage, 

which is best represented with a high standard deviation Gaussian filter to capture broader 

trends. 

            To contextualize the parameterization process, the algorithm for the dry season start 

timing may be considered. The dry season start timing is identified in the receding limb of the 

annual hydrograph through a combination of relative magnitude and slope, which are determined 

by parameterization. The start timing will be identified later in the water year, for example, if the 

relative magnitude threshold is reduced (requiring lower magnitude) or if the slope threshold is 

reduced (requiring a flatter slope), essentially creating more stringent hydrologic requirements. 

Further, the degree of smoothing applied to raw daily streamflow dampens fluctuations in flow 

and can allow a stabilized slope to be detected earlier in the water year as the level of smoothing 

is increased. The combinations of parameters for each algorithm were determined by expert 

opinion of the co-authors to best achieve timing of the functional flows illustrated conceptually 

in Figure 1-1 across a diversity of hydrologic inputs, and this parameterization is available as 

default values in the SFDA code.  

1.3.5 Application of the SFDA to functional flows in California 

Four distinct applications of the SFDA were used to calculate the timing of functional 

flow component transitions based on reference-condition California streamflow gages (Figure 

1-2). In these applications, the SFDA steps were repeated up to three times to accurately identify 

functional flow transitions across the variety of stream types found in California. The parameter 
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values (e.g., smoothing parameter σ or window size) were determined heuristically by the co-

authors for each functional flow component to achieve timing results aligning with the 

conceptual timing of functional flow transitions illustrated in Figure 1-1 and described in Yarnell 

et al. (2020). In the calibration process, parameters for each functional flow identification 

algorithm were empirically and incrementally adjusted to achieve hydrologically meaningful 

results; for example, the parameters for spring recession start timing (smoothing parameter σ, 

window sizes, and magnitude thresholds) were adjusted so that the timing would occur after wet 

season high flows, but before flows had receded to baseflow conditions. Supplemental Materials 

and associated online resources provide more information about the calculation of each 

functional flow timing metric, how to download the SFDA code, and how to modify algorithm 

parameters to achieve desired results. To demonstrate SFDA application to a specific functional 

flow component, the calculation of wet season start timing is described in Section 1.3.5.1. 

The timing metrics from the SFDA can be used to calculate additional functional flow 

metrics describing the magnitude, duration, frequency, and rate of change of flow within each 

functional flow component (e.g., baseflow magnitude or duration of the dry season) (Yarnell et 

al., 2020). The full suite of SFDA-based functional flow metrics can be visualized and 

downloaded at eFlows.ucdavis.edu, a website developed to view and interact with California's 

natural hydrology. 

1.3.5.1 Functional flow calculation for wet season start timing 

Wet season start timing delineates the portion of the water year during which streams 

receive the greatest inputs from storm runoff or snowmelt, and flows are elevated above dry 

season baseflow levels (Yarnell et al., 2020). The calculation for wet season start timing is 

presented as an example of the SFDA application to California functional flows. This calculation 
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uses one iteration of the SFDA steps (Figure 1-5). Within each water year, a high standard 

deviation Gaussian filter (G1, σ = 10) is applied (Fig. 5, Step 1) to detect the water year’s global 

peak (P1) and preceding global valley (V1) (Figure 1-5, Step 2). A relative magnitude threshold 

M1 is then set based on the magnitude of P1 and V1 as an upper limit (M1 = γ*(P1-V1), where 

γ = 0.2), to ensure that the wet season start timing is not set after flows have already increased 

during the water year (Figure 1-5, Step 3). A spline curve is fit to G1 so that its derivative can be 

used as a hydrologic requirement in the final feature detection step. Finally, searching backwards 

in time from P1, the date that discharge first falls below M1 and below a rate of change equaling 

(δ*P1, where δ = 0.002) is selected as the wet season start timing (Figure 1-5, Step 4). The 

values for γ and δ were adjusted for California reference streamflow based on the co-authors’ 

expert opinions to achieve identification of the functional flows described conceptually in Figure 

1-1 and Yarnell et al. (2020). 

 

Figure 1-5. SFDA steps to calculate the wet season start timing metric using data smoothing and feature detection 

based on magnitude and rate of change requirements. 
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1.3.6 Performance assessment 

The calibrated SFDA was evaluated based on its ability to accurately determine the 

timing of functional flow transitions across all years in the California unimpaired streamflow 

dataset. The analyzed results consist of four flow timing metrics calculated annually for each 

gage (6–65 years per gage). Performance assessment included: 1) a comparison of results across 

stream types, 2) visual inspection of results, and 3) calculation of assessment indices to quantify 

issues in algorithm performance. 

1.3.6.1 Comparison of functional flow timing results across stream types 

Results were grouped by stream type (rain-, snowmelt-, or mixed rain and snowmelt-

sourced) and visualized with violin plots, which use a rotated kernel density plot to depict the 

distribution of results. Distinct letters above the violin plots denote groups with statistically 

distinct mean values based on Tukey’s Honestly Significant Difference statistical test with a 

confidence level of 95% (Abdi and Williams 2010). Groups with no statistical difference share 

the same letter above the violin plot. Results were interpreted according to the co-authors’ expert 

knowledge of California streamflow hydrology and supported where possible with relevant 

region-specific literature.  

 

1.3.6.2 Visual performance assessment 

Visual inspection of functional flow timing results was performed as a preliminary step to 

inform quantitative inspection (Section 1.3.6.3). The four annual flow timing metrics were 

reviewed for each water year in the dataset (n = 7475 years), yielding 29,900 visual inspections. 
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Accuracy was visually assessed based on the authors’ knowledge of California seasonal flow 

components and when they were expected to occur across a range of water year types. Results 

that appeared incorrect were tabulated, grouped according to functional flow component and 

stream type, and reviewed by multiple experts in California hydrology from the co-author team 

to ensure consistency. After performing the 29,900 visual inspections of the four timing metrics, 

issues were characterized based on the bias in timing (e.g., early or late timing) and the stream 

type in which it occurred. 

 

1.3.6.3 Quantitative analysis with assessment indices 

The purpose of this analysis was to quantify issues in algorithm performance observed 

during visual assessment. The issues characterized during visual assessment were quantified 

using programmed rules defined to identify occurrence of each issue across the dataset. For 

example, one rule identified years in rain-sourced streams in which dry season start timing was 

set after August 1. This was based on repeated observation that flow magnitude and slope 

generally decrease to baseflow levels in this stream type before August 1, and dry season start 

timing set after August 1 was usually inaccurate. The developed rules were quantified across 

relevant stream types and resulting values were termed assessment indices. Many of the 

assessment indices attempt to quantify cases in which functional flow timing was either earlier or 

later than expected for a given water year, and these issues with timing were often stream type-

specific. For example, seasonal timing metrics tend to occur later in the water year for snowmelt-

sourced streams than rain-sourced streams, so a dry season timing metric of March 1 could be 

considered anomalously early in snowmelt streams but normal in rain streams. Early or late 

occurrence was defined either through an empirical, evidence-based cut-off point (such as Aug. 
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1) or if possible through a relative hydrologic relationship, such as the number of high-flow 

events that occur before or after a particular timing metric is set. Other assessment indices 

quantify water year features that make characterization with the SFDA difficult, such as dry 

water years in which only one or two peak flow events occur. Table 1-1 lists performance 

assessment indices used to quantify issues in algorithm timing calculations, based on final results 

from the SFDA. 

 

1.4 Results and Discussion 

The SFDA was found to consistently identify functional flow components across a wide 

range of hydrologic input data, enabling quantitative differentiation across stream types based on 

the timing of seasonal functional flows. Example SFDA timing results are presented in Figure 

1-6 for individual water years spanning a range of stream types (rain-, mixed-, and snowmelt-

sourced streams) and water year types (dry, moderate, and wet years) across a variety of 

watersheds, illustrating the ability of the SFDA to capture the timing of functional flow 

transitions in California across a diversity of hydrologic regimes. 
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Figure 1-6. Select SFDA results for the timing of functional flow transitions across three stream types (rain, mixed 

rain and snow, and snowmelt) and three water year types in California (dry, moderate, and wet). Individual 

hydrographs are from USGS gages 11529000 (rain), 11413100 (mixed rain and snow), and 11266500 (snowmelt). 

 

1.4.1 Comparison of results across stream types 

1.4.1.1 Fall pulse flow timing 

The timing of the fall pulse flow marks the first peak flow of the water year when 

magnitude surpasses baseflow in a distinct pulse. Unlike the other functional flow components, 

the fall pulse flow is constrained to only occur during a subset time of the water year (Oct. 1-
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Dec. 15) when hydrologic requirements for relative magnitude and duration are met, and it does 

not necessarily occur in each water year. A fall pulse flow was identified in 60–65% of water 

years across all stream types. Although there were significant differences in event timing 

(p < 0.05) between snowmelt streams and other stream types, wide overlap exists across all 

stream types (Figure 1-7.A). This is due in part to large-scale temperature and precipitation 

patterns that affect California streamflow. Early in the water year (Oct.-Nov.), temperatures 

across the state including the Sierra Nevada mountains are often above freezing, causing 

precipitation to fall as rain or rapidly melting snow (Lundquist et al. 2008; Serreze et al. 1999). 

Additionally, atmospheric river events can cause correlated streamflow patterns across much of 

the state (Cayan and Peterson 1989), which are most pronounced when all precipitation is falling 

as rain. Therefore, a high degree of similarity is expected in the timing of fall pulse flows across 

all stream types. Further reason for the limited distinction among stream classes stems from the 

algorithm itself, which detects events over a narrow search window of 75 days (Oct.1-Dec. 15) 

considered ecologically significant for California streams (Yarnell et al., 2015). The upper and 

lower bounds of the violin plots span nearly the entire available time window of 75 days (Figure 

1-7.A), indicating that fall pulse flow varies widely across all stream types. These results broadly 

align with Ahearn et al. (2004), who state that the season of flushing flows in California typically 

begins in November. 
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Figure 1-7. Functional flow timing distributions across all stream types of California unimpaired streamflow. Letters 

above violin plots indicate statistical significance. The y-axis spans the California water year (Oct.-Sept. 31) for all 

components except the fall pulse flow, which is constrained from October 1-December 15. 

 

1.4.1.2 Wet season start timing 

Wet season start timing is the date that the water year begins to experience consistently 

elevated flows from either rainfall or snowmelt (Yarnell et al., 2020). The differences in these 

values were statistically significant (p < 0.05) across the three stream types (Figure 1-7.B). The 

timing occurred three to four months later in snowmelt-sourced streams (average Mar. 4) than 

rain-sourced streams (average Dec. 12), and timing from mixed-source streams occurred across a 

wide range of values whose mean (Dec. 30) closely resembles rain-sourced streams. These 

differences were expected due to differing geographic and climatic drivers of wet season flow 

across California. In rain-sourced streams, the timing of wet season flow closely reflects patterns 
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of winter precipitation, which occurs primarily during the winter months (Dec.-Feb.), although 

these peak flows also experience high interannual variability in timing (Cayan and Peterson, 

1989, Dettinger, 2011). In high elevation snowmelt-sourced streams, peak flows are initiated by 

the snowmelt pulse as air temperatures warm enough to melt snowpack in the spring. In mixed-

source streams, wet season start timing may be cued by either winter storms or a snowmelt pulse, 

resulting in a wide range of possible values driven either by precipitation timing or temperature-

driven snowmelt (Figure 1-8). The proportion of streamflow driven by rain versus snow is an 

important consideration in mid- and high-elevation basins, as runoff is expected to shift towards 

more rain-driven flow with warming climate in the western United States (Hamlet et al. 2005; 

Stewart et al. 2015; Sultana and Choi 2018). 

 

Figure 1-8. Hydrographs of two different water years from a mixed-source stream (USGS gage 11414000) show 

varying contributions of snowmelt and winter rain storms, resulting in a wide range of results for spring recession 

start timing and wet season start timing.  
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1.4.1.3 Spring recession start timing 

The spring recession represents the seasonal transition from wet season high flows to dry 

season low flows. The spring recession start timing is statistically distinct (p < 0.05) across the 

three California stream types, with timing occurring progressively later in the water year from 

rain-sourced to snowmelt-sourced streams (Figure 1-7.C). This distinction in timing is expected 

due to climatic influences on hydrology that shift as streams progress from lower to higher 

elevations and snowpack provides increasing amounts of storage that delay streamflow response 

to precipitation (Aguado et al. 1992). In California’s highest elevations (above 2300 m), the 

spring recession is cued by a distinct temperature-driven snowmelt pulse. As the snowmelt 

influence diminishes and warming occurs earlier in lower elevation mixed-source streams 

(Figure 1-2), the snowmelt pulse may arrive earlier or may not occur at all in dry years with very 

little snowpack relative to rainfall. In rain-sourced streams the spring recession is expected to 

occur after the last rain storm of the wet season, which tends to occur several months earlier in 

the year than the snowmelt pulse on average. The distribution of spring recession start timings in 

snowmelt-sourced streams is relatively narrow, with the majority of start dates occurring 

between May 23 and July 6 (average June 6), indicating predictable recession timing in 

snowmelt streams regardless of water year type (Yarnell et al., 2010). 

The most variability in spring recession start timing occurs in mixed-source streams, 

which due to their occurrence at mid-elevation regions are highly sensitive to changes in 

temperature and snowpack (Lundquist, Cayan, and Dettinger 2004; Stewart 2008). Figure 1-8 

demonstrates how a greater snowmelt pulse is associated with later spring recession timing, 

occurring 31 days later in water year 1952 than in 1970. This finding aligns with other research 

on streamflow in the western US, that has indicated both temperature and annual flow volume 
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are significant drivers of spring snowmelt runoff timing (Aguado et al., 1992, Kormos et al., 

2016). Adding to this variability, snowmelt-receiving streams in mid-elevation regions of 

California have been subject to significant changes in the timing of snowmelt recession peaks 

due to climate warming (Stewart, 2008). Hamlet et al. (2005) for example estimated peak 

accumulation of snowmelt runoff in mid-elevation areas of California as occurring 15–45 days 

earlier throughout the last century, which adds additional variation to the spring recession start 

timing results in mixed snowmelt and rain regimes. Although rain-sourced streams also exhibit 

high variability in spring recession timing, the average spring recession start timing across rain-

sourced streams (April 7) broadly aligns with the generally accepted end of the rainy season for 

California (Liu et al., 2018). 

 

1.4.1.4 Dry season baseflow start timing 

The start timing of the dry season marks the beginning of the low flow, low variability 

portion of the water year, in which the rate of recession flows has stabilized and magnitudes 

reach baseflow level. Similar to spring recession start timing, dry season start timing is 

statistically distinct among the three stream types (p < 0.05) and occurs gradually later on 

average from rain-sourced (June 6), to mixed-source (July 16), to snowmelt-sourced streams 

(August 7) (Figure 1-7.D). The timing distribution ranges more than 100 days in rain-sourced 

streams, which is consistent with the high inter-annual variability of precipitation magnitude and 

timing (and consequently streamflow) exhibited in California (Dettinger et al., 2011). 

Despite high variability across rain-sourced streams, the average dry season start timing 

in these streams is surprisingly consistent from small to large streams. For instance, the average 

dry season start timing is June 8 in larger north coast streams (average annual flow 23 cms), and 
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is similar in flashy ephemeral streams (average annual flow 0.5 cms), with an average start 

timing of May 27 (from Lane et al. 2017). However, interannual variability in dry season start 

timing within a single stream can be high, suggesting that central tendencies do not represent dry 

season timing conditions well in rain-sourced streams. 

 

1.4.2 Performance assessment indices 

Assessment indices were created to quantify the accuracy of the SFDA for identifying the 

timing of functional flow transitions in California reference streamflow. Assessment indices are 

presented in Table 1-1, and the following section highlights key issues and limitations for each 

functional flow. The frequency of most identified issues was less than 10%, except for Snow-

early-wet and Mixed-early-spring, which are explained in Table 1-1 and below. 

 

Table 1-1. Assessment indices for SFDA timing results.   

Index name Stream 
type 

Issue Assessment index 
calculation 

Frequency 

Fall-day1 All types Fall pulse flow timing can occur on the very 
first day of the water year (Oct. 1), when it is 
difficult to determine from an annual 
hydrograph if the set date represents an 
actual peak or if it is capturing a recessing 
flow carried over from the previous water 
year. 

Percentage of years in 
which the fall pulse 
timing is on day one of 
the water year (Oct. 1). 

1% 

Wet-season All types Occasionally the requirements for wet season 
start timing are not met so the metrics are not 
calculated. 

Percentage of years in 
which spring recession 
or dry season start 
timing are calculated, 
but wet season start 
timing is not 
calculated. 

2% 

Spring-dry-
gap 

All types A lag between spring recession and dry 
season start timing of more than five months 
indicates an anomaly within the water year, 
such as early spring recession or late dry 
season start timing, or a year in which the 

Percentage of years in 
which the number of 
days between spring 
recession and dry 
season start timing is 

5% 
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component timings were based off of a very 
limited number of storms. 

greater than 150 days 
(five months). 

Snow-late-
spring 

Snowmelt Spring recession start timing can be 
calculated late into the recession period such 
that it occurs at the end of the snowmelt 
pulse instead of the beginning. Dry season 
start timing consequently occurs very soon 
after the spring recession timing. 

Percentage of years in 
which spring recession 
start timing and dry 
season start timing 
occur within 21 days 
of each other. 

1% 

Snow-early-
wet 

Snowmelt Wet season start timing in snowmelt streams 
can be triggered by large rainstorm flows 
early in the climatic wet season (Nov.-Jan.), 
and other years it is triggered by the 
snowmelt pulse (Apr.-May). This results in a 
wide range of start timing in the snowmelt 
stream type, triggered by differing hydrologic 
cues. Identification of timing before February 
1 approximates how often wet season start 
timing is triggered by rainstorms instead of 
snowmelt. 

Percentage of years in 
which wet season start 
timing occurs before 
February 1. 

25% 

Mixed-spring-
wet/Rain-
spring-wet 

Mixed-
source and 
Rain 

In especially dry years, the annual 
hydrograph can be defined by a single large, 
brief storm event. This may cause wet season 
and spring recession start timing to be set 
based on a single storm such that they occur 
in close proximity. 

Percentage of years in 
which wet season and 
spring recession start 
timing occur within 
30 days of each other. 

Mixed-spring-
wet: 4%/ 
Rain-spring-
wet: 4% 

Mixed-early-
spring/Rain-
early-spring 

Mixed-
source and 
Rain 

Spring recession start timing can occur 
before the end of wet season occurrence. This 
most commonly occurs in hydrographs 
without a strong snowmelt presence. 

Percentage of years in 
which any high flows 
(>5th percentile) occur 
after that year’s spring 
recession start date. 

Mixed-early-
spring: 
21%/Rain-
early-spring: 
5% 

Mixed-late-
spring 

Mixed-
source 

Dry season start timing can occur 
immediately after spring recession start 
timing, with a small gap of time between. 
This often occurs when the spring recession 
is identified too late into the period of 
receding high flows. 

Percentage of years in 
which spring recession 
and dry season start 
timing occur within 
21 days of each other. 

1% 

Rain-late-wet Rain Wet season start timing can occur late after 
the first high flows of the wet season. 

Percentage of years in 
which any high flows 
(>5th percentile) occur 
before that year’s wet 
season start date. 

8% 

Rain-late-dry Rain Dry season start timing can occur late into 
the dry season in rain-sourced streams, well 
after flows have already receded. This is 
usually the case when dry season start timing 
is set in August or later, based on repeated 
visual inspection. 

Percentage of years in 
which dry season start 
timing occurs later 
than August 1. 

10% 

 

The methods presented here to identify hydrologic features and determine error differ 

from previous hydrologic studies, which can often take advantage of validated training sets to 
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determine accuracy (Cannas et al. 2006; Letcher et al. 2001; Smith and Schwartz 2017). The 

heuristic methods used in this research are similar to other approaches that require some 

subjectivity for parameterization of peak detection (Palshikar 2009), and qualitative visual 

assessment methods are similar to approaches used to validate climate patterns in climate 

modeling studies that pair qualitative and quantitative model assessment (Gyalistras et al. 1994; 

Paul and Hsu 2012). Performance assessment based on validation of known hydrologic 

conditions employed in this study is similar to the approach of Déry et al. (2009), who assessed a 

new method of spring recession identification across different river types in their study region. 

The proposed methods, although subjective in the choice of parametrization, present a consistent 

and repeatable way to identify functional flow components, advancing previous methods of 

quantifying seasonal streamflow patterns. 

 

1.4.2.1 Issues in SFDA performance 

Figure 1-9 presents common issues in the SFDA for each functional flow component, 

which were often attributed to uncommon hydrologic patterns or effects from smoothing filters 

that occasionally have the undesired effect of over-dampening storm peaks while detecting broad 

hydrologic trends. In some water years, the first day of the water year (Oct.1) was identified as 

the date of the fall pulse flow, which presents ambiguity as to whether the first day of the water 

year is an actual peak event or is instead part of a continual decline from a peak in the previous 

water year (Figure 1-9.A). This situation occurs most often in naturalized gage data, with a 3.5% 

occurrence rate across all naturalized water years and an average occurrence rate of 1% across 

the entire dataset (Table 1-1, index WSI-day1). 
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Figure 1-9. Examples in which timing metrics are affected by uncommon hydrologic patterns (A and B) or are 

identified earlier or later than expected given expert understanding (C and D). Panels C and D illustrate the 

algorithm results compared to proposed improvements based on the co-authors’ understanding of California 

hydrology. Hydrographs from USGS gages 11213500 (A), 11046300 (B), 11033000 (C), and 11120520 (D). 

 

Both mixed- and rain-sourced streams experienced some water years in which a single 

large high flow event dominated the annual hydrograph such that start timings of wet season and 

spring recession were based on the same peak flow (Figure 1-9.B). This occurred in 4% of 

mixed-source streams and 4% of rain-sourced streams (Table 1, indices Mixed-spring-wet/Rain-

spring-wet) and could result in anomalous functional flow metrics based on these rare hydrologic 

conditions. In mixed-source streams, early identification of spring recession start timing was 
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found with a frequency of 21% (Table 1-1, index Mixed-early-spring), sometimes due to the 

effect of over-dampening rainstorm peaks with smoothing filters when attempting to detect broad 

hydrologic trends (Figure 1-9.C). Conversely, spring recession start timing occurred late in 10% 

of snowmelt stream water years, when the algorithm was triggered by small peaks along the 

recession limb instead of the main snowmelt pulse (Table 1-1, index Snow-early-spring). The 

algorithm for dry season start timing assesses the change in magnitude and slope along the 

recession limb, so dry water years with very little change in these features are more likely to 

have issues with component detection. This was often the case when dry season start timing was 

identified late in the water year (Figure 1-9.D), which occurred in 10% of rain-sourced water 

years (Table 1-1, index Rain-late-dry). These issues are expected to improve when SFDA 

parameters are calibrated for smaller regions of streamflow data, instead of applying the same set 

of parameters across a wide array of input data, as was done in this statewide case study. 

 

1.5 Conclusions 

This study developed an objective signal processing algorithm to address the need for a 

robust method to characterize the timing of seasonal flow transitions from daily streamflow time 

series. The Seasonal Flow Detection Algorithm (SFDA) improved on existing methods that rely 

on fixed time steps through the novel application of established signal processing techniques to 

identify the timing of seasonal flow transitions. The application to California streams 

demonstrated the ability of this approach to identify the timing of functional flow components 

from unimpaired daily streamflow time series across a wide range of climatic and geographic 

settings and extreme seasonal and interannual hydrologic variability. Results highlight 
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hydrologic distinctions among varying drivers of streamflow, such as progressively later timing 

of spring recession flow as streams shift from rainfall-sourced to snowmelt-sourced flow 

regimes. Limitations of the approach were determined through a combination of visual expert-

based assessment and quantitative performance assessment. In general, the percentage error in 

timing calculations did not exceed 10% across relevant water years for any assessment index, 

with infrequent exceptions. In a parallel effort, functional flow metrics produced by the SFDA 

for California reference gages are being extrapolated to ungaged streams to inform statewide 

environmental flow recommendations. Likewise, the SFDA has potential to be applied to other 

regions or countries sharing highly seasonal climates similar to California, by adjusting 

algorithm parameters to suit local hydrology. For instance, the SFDA metrics could be applied to 

assess shifts in streamflow due to climate change, with particular focus on potential changes in 

timing of seasonal flows. The proposed approach supports improved understanding of high-

resolution spatial and temporal trends in hydrologic processes and climate conditions across 

complex landscapes and can inform environmental water management efforts. 
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Chapter 2 2 

Projected effects of  temperature and 

precipitation variability change on streamflow 

patterns using a functional flows approach 

 

 

2.1 Abstract 

Streamflow patterns are shifting with climate change, and these shifts pose increasing risk 

to freshwater ecosystems. These emerging changes must be linked with ecological functions of 

river systems to understand how climate change may affect freshwater biota. In this study we 

used a functional flows approach to analyze the ecological effects of changing streamflow 

patterns in snowmelt-dominated watersheds of the Sierra Nevada mountains of California. Our 

climate change modeling method combined ensemble Global Climate Models (GCMs) and 

decision scaling methods to incorporate the effects of GCM-projected changes in precipitation 

variability. Of climate parameters explored, air temperature causes the most change in 

 

2 This chapter has been published: Patterson, N. K., Lane, B. A., Sandoval-Solis, S., Persad, G. G., & Ortiz-Partida, 
J. P. (2022). Projected effects of temperature and precipitation variability change on streamflow patterns using a 
functional flows approach. Earth's Future, 10, e2021EF002631. https://doi.org/10.1029/2021EF002631 
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streamflow, although precipitation variability compounds changes driven by air temperature. The 

greatest changes in ecologically-relevant streamflow patterns manifest as longer and drier dry 

season conditions, earlier snowmelt recession, and higher-magnitude peak flows. Although the 

direction of changes in functional flow metrics are largely consistent across models and 

watersheds, the magnitude of change depends strongly on human emissions levels. The 

analytical approach used in this study can serve as a model for integrating multiple approaches in 

hydroclimatic assessment of ecological change, and the results can help prioritize specific 

aspects of the flow regime for restoration efforts. 

 

2.2 Introduction 

There is international consensus that human emissions have unequivocally caused 

warming across Earth’s atmosphere, oceans, and land, and this warming has caused changes in 

streamflow patterns on a global scale (IPCC 2015). Intensification of the hydrologic cycle caused 

by warming has accompanied changes in global weather patterns, leading – among other effects 

– to heavier and more frequent storms in many parts of the world in the last decade (Mamo 

2015). In regions with seasonal snow storage, observed changes in streamflow patterns 

associated with warming include earlier timing of the spring snowmelt pulse (Déry et al. 2009; 

Lundquist et al. 2009; Regonda et al. 2005; Siirila-Woodburn et al. 2021), lower dry season 

baseflows (Godsey, Kirchner, and Tague 2014; Madej 2010; Kormos et al. 2016), and higher 

peak flows (M. Dettinger 2011; Gershunov et al. 2019). Other shifts in streamflow patterns, 

particularly a tendency for more frequent, intense droughts, can make water supply more 

precarious, as witnessed by shortages in major metropolitan areas such as Cape Town, South 
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Africa and Mexico City, Mexico (Donnenfeld, Crookes, and Hedden 2018; Martinez et al. 2015; 

Ortiz-Partida et al. 2019). Continued climate change may also shift entire streamflow regimes on 

a broad scale, as anticipated for a third of US rivers by 2100 (Dhungel et al. 2016). These 

changes will threaten freshwater ecosystems either through the direct consequence of flow 

regime shifts on highly adapted biota, or through intensified pressure to divert streamflow for 

human use. A quantified approach is needed to understand and enable protection of Earth’s 

remaining freshwater ecosystems in light of climate change. 

Mountainous regions may be particularly susceptible to climate change since high 

elevation regions are warming at some of the fastest rates found globally (Pepin et al. 2015). In 

watersheds with seasonal snowpack accumulation, observed changes in streamflow patterns are 

often caused by a shift in wintertime precipitation from snow to rain as the climate warms (M. 

Dettinger, Udall, and Georgakakos 2015; Mao, Nijssen, and Lettenmaier 2015). In the state of 

California, USA, for example, the snowpack of the Sierra Nevada mountain range has 

historically provided a gradual release of snowmelt as temperatures warm during the spring, 

creating a seasonal snowmelt runoff pattern found in many of the state’s rivers and streams(Lane 

et al. 2018). The shift towards less snow and more rain in mountainous regions however has 

lowered the volume of the spring snowmelt pulse while increasing the prevalence of flashy peak 

flows from winter storms (Das et al. 2011; T. E. W. Grantham et al. 2018). 

Changes to historic streamflow patterns due to climate change will inevitably stress 

freshwater ecosystems. Aquatic and riparian species adapt their life history to their natural flow 

regime habitat, so preserving natural flow patterns is a primary element of freshwater ecosystem 

conservation. For example, the spring recession flow is a characteristic component of the annual 

hydrograph in mountainous regions of the western U.S. describing the period of gradually 
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receding flows when warming springtime temperatures melt the accumulated snowpack. This 

can act as a reproduction cue for both amphibians and riparian vegetation (Mahoney and Rood 

1998; Yarnell, Viers, and Mount 2010). Anadromous Pacific salmon of Northern America also 

rely on aspects of the natural flow regime for reproduction, including peak flows that form clean 

gravel beds as spawning habitat and spring recession flows that keep fine sediments from 

accumulating in spawning beds (Escobar-Arias and Pasternack 2010). Freshwater 

macroinvertebrates are an important component of stream ecosystems, providing food for fish 

and amphibians. Alterations to natural flow patterns can affect instream conditions required for 

macroinvertebrate survival such as temperature, and disturbance to stable flow conditions such 

as rapid fluctuations from dam hydropeaking can cause egg mortality in near-shore habitat 

(Salmaso et al. 2021). Quantifying the ecological significance of potential shifts in flow regimes 

due to climate change will be essential for protecting remaining freshwater ecosystems. 

Although current and future impacts of climate change on riverine ecosystems are widely 

acknowledged, such as reductions in snowmelt contributions and increases in precipitation 

volatility (Aldous et al. 2011; Arthington et al. 2010; Filipe, Lawrence, and Bonada 2013; 

Kakouei et al. 2018; P. B. Moyle, Katz, and Quiñones 2011), links between changes in 

streamflow and potential ecological consequences have not been quantified on a large scale. The 

current understanding of expected streamflow changes in California relies on coarse indicators 

such as shifts in annual or monthly average flow (T. E. W. Grantham et al. 2018; Zimmerman et 

al. 2018; He et al. 2019; Z. Liu et al. 2021) or peak flow patterns (Das et al. 2011; M. Dettinger 

2011). While these indicators are important for illustrating a general picture of future streamflow 

patterns, they do not provide the level of detail needed to understand how specific functions of 

river ecosystems may be affected by particular aspects of streamflow change. Such information 
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is critical for developing effective conservation and mitigation strategies. To meet the need for 

an ecologically-based analysis of future streamflow change, the functional flows framework 

offers a quantitative approach for explicitly linking changes in streamflow to changes in 

ecological functions of river systems. 

The functional flows approach is founded on the premise that specific components of the 

annual flow regime, or functional flows, support particular ecological functions (Escobar-Arias 

and Pasternack 2010; Yarnell et al. 2020). For rainfall-snowmelt flow regimes typical of 

California, functional flow components have been identified for five aspects of the annual flow 

regime which each provide flows with distinct ecological functions (Figure 2-1) (Yarnell et al. 

2020). These flow components can be quantified with functional flow metrics which describe 

key attributes of streamflow, including magnitude, timing, duration, frequency, and rate of 

change (N L Poff et al. 1997). Patterson et al. (2020) developed a signal-processing approach to 

calculate a set of annual metrics describing these functional flows and evaluate natural functional 

flow patterns over all reference-condition stream gages in California. Signal processing is critical 

to this methodology because of its ability to capture hydrograph patterns that other conventional 

methods are unable to detect, while preserving the timing of seasonal flow patterns (Ashraf et al. 

2022; Patterson et al. 2020).  All functional flow components are represented in this study with 

the annual functional flow metrics (i.e. all metrics excluding long-term peak flow statistics) and 

annual peak flow to allow for direct comparison between water years. These include metrics 

describing the magnitude, timing, duration, and rate of change of functional flow components, 

such as the start timing of the dry season or the rate of change of the spring recession. Long-term 

flow statistics from the original suite of metrics would not vary from year to year at a location so 

they are omitted from this analysis.   
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Figure 2-1. Functional flow components (boxes) for a mixed snowmelt-rain runoff regime typical of the mid-

elevation Sierra Nevada region capture aspects of the hydrograph most relevant for ecological systems. Functional 

flow characteristics corresponding to each component are shaded, and metrics used in this study are marked with an 

X. Figure adapted from (Yarnell et al. 2020). 

There are multiple methods available to estimate streamflow alterations due to changes in 

climate. Most of these use data derived from Global Climate Models (GCMs) in some capacity, 

as they are the best available tools to simulate climate response to heat-trapping gas emissions. 

Decision scaling, on the other hand, is a tool for water resources decision making which is 

informed by GCMs but uses a bottom-up risk assessment approach, testing the sensitivity of 

user-defined metrics to a range of hydroclimatic conditions representing potential future climatic 
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scenarios (L. R. Brown and Bauer 2010; C. Brown et al. 2012). Decision scaling has been 

applied to climate change planning in California’s Central Valley by measuring the effects of 

shifted average temperature and precipitation scenarios on a set of performance metrics 

(Schwarz, Ray, and Arnold 2019). While decision scaling demonstrates the sensitivity of a 

system to various shifts in climate, it does not quantify the likelihood of these shifts to occur 

across different timescales as GCMs do for various emissions trajectories. We therefore combine 

the two approaches by focusing decision scaling analysis on GCM-projected future climate 

conditions, in order to understand future climate changes that are considered likely to occur. The 

decision scaling approaches that have been taken so far, even when overlaid with probabilities of 

occurrence from GCM projections, generally only consider coarse climate metrics like average 

precipitation or temperature (Schwarz, Ray, and Arnold 2019). These shifts alone may not 

represent how future changes will stress riverine ecosystems. In this GCM-based analysis we 

develop a new set of climate statistics describing precipitation variability at event-, seasonal-, 

and interannual scales, and apply them alongside temperature and precipitation volume shifts to 

investigate the separate and combined effects of these climate parameters on functional flows. 

With high aquatic biodiversity (P. Moyle et al. 2015), a legacy of intensive water 

management (Hanak 2011), and ample hydrologic data and models compared to most regions 

worldwide (Escriva-bou et al. 2016), California and specifically the Sierra Nevada mountain 

range serves as an ideal study system for ecohydrologic research. In California, down-scaling 

and bias-correction of GCMs has already been performed through Local Constructed Analogs 

(LOCA) (Pierce, Cayan, and Thrasher 2014), a statistical scheme that downscales and bias-

corrects daily minimum and maximum temperature and precipitation outputs from GCMs 

(Pierce, Cayan, and Thrasher 2014; Pierce, Cayan, and DeHann 2016). California LOCA 
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datasets have been used to simulate long-term daily streamflow time series under alternative 

climate change scenarios (RCP4.5 and 8.5) (Pierce, Kalansky, and Cayan 2018) and to predict 

possible impacts on water resources, including changes in hydroclimatic metrics relevant for 

water resources management (Persad et al. 2020).  

The objective of this study is to assess climate-driven changes in seasonal streamflow 

patterns in a snowmelt dominated region, using functional flows to link streamflow change to 

key ecological functions. We calculate functional flow change with the novel Seasonal Flows 

Detection Algorithm, using this tool for the first time to assess potential ecological effects of 

climate change. To better inform aquatic ecosystem protection in light of ongoing climate 

changes, we address the following research questions: (1) Which aspects of ecologically-relevant 

streamflow are most vulnerable to change in future scenarios, as measured by functional flow 

metric change? (2) How do streams across the western Sierra Nevada differ in their response to 

climate change, and how consistent is streamflow response across locations and models? (3) 

Which drivers of climate change (air temperature, precipitation volume, or precipitation 

variability) cause the most change in functional flow metrics? We use a hybrid approach to 

climate change modeling, drawing on both decision scaling methods and ensemble GCMs. Our 

study consists of two complementary analyses, at both regional and single watershed spatial 

scales, that allow us to gain a thorough understanding of both how and why streamflow in the 

Sierra Nevada area may shift due to climate change. Notably, we build on previous decision 

scaling modeling efforts that used temperature and cumulative precipitation changes alone by 

also incorporating the effects of potential changes in precipitation variability. 
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2.3 Methods 

This study consists of two parts: (1) An analysis of climate change driven trends in 

functional flows in streamflow derived from ensemble GCMs for 18 catchments in the western 

Sierra Nevada mountains, and (2) A case study of a single catchment from Part 1 using decision 

scaling to determine the contribution of different climate drivers to observed changes in 

functional flow metrics (Figure 2-2). The two parts of the study give complementary insights 

into interrelated facets of climate change, including differences in streamflow change across 

watersheds, the relative influence of climatic drivers, and the similarity of results between the 

GCM and decision-scaling approaches. In both parts of the study, changes in ecologically-

relevant streamflow were quantified using changes in functional flow metrics. 
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Figure 2-2. The study approach consists of two parts. Part 1 is a GCM analysis of daily streamflow projections for 

18 sites along the western slope of the Sierra Nevada mountains in California. In Part 2, the Merced River is used as 

a case study for a decision scaling analysis with multiple climate parameters. 

2.3.1 Study Area 

The western slope of the Sierra Nevada mountains in California was selected for this 

analysis to showcase watersheds of the Sierra Nevada with significant contribution to state water 

supply that are at a transitional elevation, where future shifts from snow to rainfall may have 

severe consequences for both riverine ecology and statewide water management. We chose 18 

sites in the mid-elevation band of the western slope of the Sierra Nevada mountains, within the 

elevation range of 150-1000m, the approximate elevation boundary of the Sierra Nevada foothill 

ecoregion (Cleland et al. 2007) (Figure 2-2). These selected sites all have a highly seasonal 

Mediterranean climate typical of California, and vary from primarily snowmelt-dominated flow 
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regimes to mixed snowmelt and rain regimes (Lane et al. 2018). Data at each site consisted of 

modeled daily streamflow timeseries for 150 years, from 1950-2099. 

The watershed-level case study is focused on the Merced River watershed, one of the 

sub-basins included in the Part 1 regional study. This watershed is 2686 km sq in size, with an 

elevation of 274 m at its outlet at Lake McClure and a high point of 4000 m at Mt. Lyell in 

Yosemite National Park. From Lake McClure, the lower segment of the Merced River continues 

west to join the San Joaquin River, eventually feeding the Sacramento-San Joaquin Delta. The 

Merced River watershed has a highly seasonal climate, with the majority of precipitation falling 

between November and March. Wintertime precipitation falls as snow in areas above about 800 

meters, and streamflow in the Merced River experiences a distinct snowmelt pulse in the spring 

as warming temperatures melt the accumulated winter snowpack. The Merced River is important 

for California water resources as a contributor to the Sacramento-San Joaquin Delta, the hub of 

California’s water supply system (Koczot et al. 2021). 

 

2.3.2 Data Inputs 

Modeled daily streamflow data for sites in California were obtained from the 4th 

California Climate Change Assessment Group (Mallakpour, Sadegh, and Aghakouchak 2018; 

Pierce, Cayan, and Thrasher 2014; Pierce, Cayan, and DeHann 2016). Streamflow data were 

generated using the Variable Infiltration Capacity (VIC) land surface model with climate 

forcings from a suite of GCM simulations. Ten GCMs were selected from the Fifth Coupled 

Model Intercomparison Project (CMIP5), based on the DWR Climate Change Technical 

Advisory Group’s assessment of climate models most appropriate for California-specific analysis 
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(CCTAG 2015). Each GCM was run with two Representative Concentration Pathways (RCPs) 

representing medium (RCP4.5) or high (RCP8.5) future emissions scenarios, providing 20 total 

climate scenarios for analysis. Data inputs to the VIC model were obtained from GCMs using 

downscaled and bias-corrected data generated using the LOCA method (Pierce, Cayan, and 

Thrasher 2014; Pierce, Cayan, and DeHann 2016). A detailed description of the LOCA method 

and its application to this dataset is available from (Mallakpour, Sadegh, and Aghakouchak 

2018). 

For the decision scaling case study on the Merced River we used unimpaired daily 

streamflow modeled from 1950-2013 using the SAC-SMA-DS model at Lake McClure, the site 

of New Exchequer Dam (Schwarz et al. 2018). SAC-SMA-DS couples the Sacramento Soil 

Moisture Accounting lumped conceptual hydrologic model (SAC-SMA, (Bumash, Ferral, and 

McGuire 1973)) with a streamflow routing model (Lohmann et al. 1998). Model performance 

was tested by (Schwarz et al. 2018) for the Merced River basin and other subbasins draining the 

west slope of the Sierra Nevada using Nash-Sutcliffe efficiency, reporting very good 

performance for both calibration (1951–1980) and validation periods (1981–2002). The model 

operates at a daily timestep and includes process models for soil moisture accounting, potential 

evapotranspiration, snow processes, and flow routing. Input air temperature and precipitation 

data used in the model was generated by (Livneh et al. 2015) by detrending historic data from 

1950-2013 and spatially distributing the data over 1/16th grids. This data represents historic 

climate conditions and was used to generate the control streamflow dataset for comparison with 

subsequent climate scenarios. 

Schwarz et al. (2018) applied a decision scaling approach for streamflow in the Merced 

River watershed by incrementally shifting temperature and precipitation volume inputs to perturb 
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the SAC-SMA-DS model. In this study, we applied a similar decision scaling approach and 

additionally considered potential changes in precipitation variability. Precipitation variability 

shifts are based on metrics developed by (Persad et al. 2020) and are split into three categories: 

Event Intensity, Seasonal Variability, and Interannual Variability (Table 2-1). 

Table 2-1. Precipitation variability parameters used in the Merced River decision scaling framework. Precipitation 

traces adjusted according to the precipitation variability metrics were then routed to streamflow with the SAC-SMA-

DS model in the Merced River Basin. 

 

2.3.3 Data Analysis 

2.3.3.1 Part 1: Sierra Nevada regional analysis 

The Seasonal Flows Detection Algorithm (SFDA) (Patterson et al. 2020) was used to 

calculate 18 annual functional flow metrics across the Sierra Nevada daily streamflow 



 

47 

timeseries. These metrics describe the magnitude, timing, duration, frequency, and rate of change 

of five functional flow components identified for Mediterranean climate regions: 1) fall pulse, 2) 

wet season baseflow, 3) peak flows, 4) spring recession, and 5) dry season baseflow that each 

serve ecological purposes as described in (Yarnell et al. 2020).  

The dataset generated by the SFDA consists of a 150-year timeseries for each functional 

flow metric, at each site, for each GCM, and for each future emission scenario. Flow metric 

timeseries were tested for change over time to explore how climate change signals from GCMs 

are expressed through changes in functional flows. The Mann-Kendall statistical test was used to 

test for monotonic (single direction) change in flow metric timeseries with a 0.05 significance 

threshold (95% confidence interval). To prepare data for Mann-Kendall trend analysis, each 

timeseries was tested for autocorrelation using the Ljung-Box statistical test and autocorrelation 

was corrected using iterative differencing. Annual hydrographs of three sites across the study 

region using the RCP8.5 emissions scenario were plotted to visualize the changes to functional 

flow metrics between historic (1950-2015) and future (2035-2100) time periods (RCP4.5 figures 

in Supplementary Materials (SM)). The three sites, selected to visualize results in the north, 

central, and southern parts of the study region, span a range of latitude and stream sizes.  

Mann-Kendall trend results for the functional flow metric timeseries were then tested for 

agreement across models and sites using the Gini index. The Gini index is used in numerous 

applications such as economics, ecology, and classification problems, and can be described as a 

measure of purity or homogeneity (Cutler et al. 2007). In the context of this study, the Gini index 

was calculated on Mann Kendall trend outcomes for each site, with the Gini purity index 

interpreted as a measurement of model agreement. Each site has 10 trend outcomes for each 

functional flow metric, representing the 10 GCMs with RCP8.5 emissions (RCP4.5 GCM 
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outcomes were calculated separately). Agreement among the 10 model outcomes was measured 

using the Gini index for each emissions scenario. Further description of the Gini index and its 

application to the study is available in the SM. 

 

2.3.3.2 Part 2: Merced River case study 

In the watershed-level case study, we applied a decision-scaling approach to investigate 

climate change impacts on functional flows in the upper Merced River watershed. While a 

region-wide analysis is useful for illustrating broadly how western Sierra Nevada streams may 

respond to climate change, it is important to also evaluate these effects at the watershed level. 

The Merced River analysis offers a deeper investigation of temperature and various aspects of 

precipitation, explored separately and in congruence, and how they may affect ecologically-

relevant streamflow in a full range of future climate scenarios. Across temperature, precipitation 

volume, and the three precipitation variability parameters, five total climate parameters were 

used to create an ensemble of climate scenarios to test on the Merced River. Climate modeling 

scenarios were created according to three strategies: (1) One-at-a-time (OAT) scenarios in which 

each parameter is shifted individually in stepwise increments, (2) Extreme end scenarios in 

which combinations of parameters are set at their highest values, and (3) Mid-range scenarios, in 

which combinations of parameters are shifted together to either "
#
 or !

#
  of their full range. The 

range of values for precipitation variability parameters were calculated for the Merced River 

Basin from gridded GCM outputs for ten GCMs at two emissions scenarios (the same models 

used in the regional California analysis) (Persad et al. 2020). The modeled temperature range is 

based on temperature change in Merced County from end-of-century (2070-2099) GCM 
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projections under the RCP8.5 emissions scenario and was accessed on the CalAdapt website 

(Pierce, Kalansky, and Cayan 2018). Due to the highly variable nature of annual precipitation 

projections and the lack of uniform change in direction, we deemed the range from -30% to 30% 

change appropriate for creating a broad yet suitable range of future precipitation conditions. This 

closely matches the range of annual precipitation changes for Merced County in end-of-century 

GCM projections under the RCP8.5 emissions scenario, at -28% to 43% (Pierce, Kalansky, and 

Cayan 2018). Further details of the decision scaling methodology are available in the SM.  

Each of the 42 total climate scenarios (including the control) was used in turn to force the 

SAC-SMA-DS model to produce a 64-year daily streamflow timeseries. These scenarios do not 

reflect change through time like the suite of timeseries used for the regional analysis in Part 1, 

but instead reflect 64 years of the specified climate conditions, which were then compared to the 

control to assess change. Each daily streamflow timeseries was input to the SFDA to produce a 

series of annual functional flow metrics. SFDA parameters were set to match the Low Volume 

Snowmelt and Rain natural streamflow class for California (Lane et al. 2018), with slight 

parameter adaptations made to optimally capture seasonal streamflow patterns. Annual 

hydrographs are plotted for the control as well as OAT scenarios with maximum change in each 

climate parameter, for representative dry, normal, and wet years. Magnitude and timing of the 

spring recession and dry season are overlaid on the hydrographs for each scenario to showcase 

the changes to flow metrics caused by each climate parameter. 

Finally, an ecological exceedance analysis was performed to determine the frequency that 

climate scenarios exceeded historic ranges of functional flow metrics, i.e. the relative frequency, 

in percentage, that a given scenario exceeded historic metric ranges. “Eco-exceedance” was 

calculated for each functional flow metric as the percentage years (out of 64 annual values) that 
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the metric exceeded the (a) full range and (b) 10th to 90th percentile range of values in the 

control scenario. The resulting distributions of timing and magnitude metric values for all 

climate scenarios are plotted. Included in these plots are the boundaries of the (a) full range and 

(b) 10th to 90th percentile range of control values, plotted as boxes to provide context for the 

climate scenarios and to give a visual separation of historically rare events (occurring outside the 

10-90% range). Reported values of eco-exceedance are based on exceedance of the full range of 

metric values under the control scenario. 

 

2.4 Results 

2.4.1 Part 1: Sierra Nevada Regional Analysis 

Annual hydrographs of three sites across the western Sierras study region at the RCP8.5 

emissions scenario (Figure 2-3) visualize the changes to functional flow metrics described in 

more detail through the trend analysis (RCP4.5 figure in SM). Across the selected sites, regional 

differences appear although the direction of change in the hydrograph due to climate change is 

consistent. Across all three rivers, a shift towards earlier dry season and spring recession timing 

is prominent, although the degree of change differs between sites. For example, the average shift 

in earlier dry season timing is 22 days for the Merced River at Lake McClure, versus 44 days for 

the Yuba River at Englebright Dam. This shift to earlier timing of the spring recession and dry 

season is likely due to an earlier melt-off of winter snowpack in the headwaters of these 

watersheds, brought on by higher temperatures. All three sites show evidence of increased 

rainfall in the winter season through the elevation of flashy winter month flows, which is due to 

the apparent shift in precipitation phase from snowfall to rain as temperatures warm in climate 
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simulations. However, wet season timing shifts are comparatively slight, on average between 5 

and 15 days earlier at the selected sites. Median flow magnitude of the wet season increased for 

all three rivers, although this is balanced by a shorter duration of the wet season. Average annual 

flow generally does not change across sites or models. Changes in the fall pulse flow were slight 

and not uniform in direction, which is likely due to the random nature of the first fall-season 

rainfall. 

 

 

Figure 2-3. Historic (1950-2015) and future (2035-2100) simulated daily streamflow for three sites, aggregated over 

ten RCP8.5 GCMs (RCP4.5 in SM). Shifts in functional flow metrics for the historic and future time periods are 
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marked with arrows. Several metrics such as dry season and spring recession timing show consistent direction of 

change, although the magnitude of change varies across sites and models. 

 

 Across the 18 study catchments, the range in shifts to earlier dry season and spring 

recession start timing shows variation from days to several weeks in RCP8.5 emissions scenarios 

models (Figure 2-4) (RCP 4.5 figure in SM). Six of the 18 catchments exhibit more than a month 

of shift towards earlier timing in both dry season and spring recession. Notably, shifts across all 

catchments occur towards earlier timing instead of later timing, although some shifts are slight. 

No clear pattern emerges in the magnitude of shifts across latitudes.  

 

Figure 2-4. Timing shifts in dry season and spring recession functional flow metrics across all study catchments 

illustrate the variability of shifts across the Sierra Nevada study region. All sites exhibit a shift towards earlier 

timing to varying amounts.  
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 Figure 2-5 depicts the consistency of functional flow metric trends across sites and 

models for RCP8.5 emissions scenarios (RCP4.5 figure in SM). The bar for each functional flow 

metric represents the number of models experiencing statistically significant change (out of 10 

total), averaged across the 18 total sites, and the direction of the bar indicates positive or negative 

change. The star rating indicates the degree of agreement in the model outcomes for that 

particular trend according to the Gini index, where an index between 0-25% is given one star, 

25-50% is two stars, and above 50% is three stars (further description of the Gini index provided 

in the SM). In the RCP8.5 scenario, 7 out of 18 metrics exhibit a significant trend across the 

period of record in at least half of the sites (3 out of 18 metrics for RCP4.5). Across most metrics 

that experience change, this change is in the same direction across sites and models. This 

consistency generally holds true for models in both RCP8.5 and RCP4.5 emissions scenarios, 

although models under the RCP4.5 scenario produce less change across some sites. Several 

metrics experiencing no change, such as fall pulse metrics, show high agreement in the no-

change outcome. Coefficient of variation (CV) and annual peak flow stand out with relatively 

high agreement in future increases. The average increase in CV is 37% across all sites at RCP8.5 

levels (24% for RCP4.5), indicating substantially more variable flows in the annual hydrograph. 

Annual peak flow volumes increased an average of 39% across all sites at RCP8.5 emissions 

levels (25% for RCP4.5). 
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Figure 2-5. Results for functional flow metric trend analysis for models under the RCP8.5 emissions scenario 

(RCP4.5 in SM), where metrics are grouped according to seasonal flow components (colored boxes). Bars represent 

the number of models experiencing significant change (out of 10 total), averaged across the 18 total sites, where the 

direction of each bar indicates positive or negative change. Stars above the bars indicate model agreement according 

to the Gini index, where index values of 0-25% get one star, 25-50% get two stars, and 50-100% get three stars. 

Under the RCP8.5 scenario, a trend in earlier timing of the dry season and spring 

recession appears among more than half of models across sites, although agreement is only 

moderate across models. The average change in spring recession timing across all sites and 

models is 23 days earlier, with the highest change in one site being 53 days earlier at Mill Creek, 

in the northern end of the study area (average 16 days earlier and maximum change 39 days 

earlier, under the RCP4.5 scenario). Similarly, in dry season start timing, average change is 25 
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days earlier with an at-a-site maximum of 55 days earlier (average 17 days earlier and maximum 

change 35 days earlier, under the RCP4.5 scenario). Coupled with these changes are a weak 

agreement in lower median and 90th percentile flow magnitude of the dry season, and higher 

magnitude of spring recession flows. 

 

Table 2-2. Differences in functional flow metric value between historic (1950-2015) and future (2035-2100) periods 

for all models and sites. Under each emissions scenario, difference values are averaged across all models at a site, 
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and the minimum, average, and maximum difference values are reported from across the 18 sites. Magnitude 

differences are reported in percent change. 

 

Functional 

flow 

component Metric

RCP8.5 RCP4.5

minimum 

difference
average

  difference
maximum

  difference
minimum

  difference
average

  difference
maximum

  difference

Fall Pulse

Magnitude (%) -16.6 -0.6 12 -17.7 0.6 13.1

Timing (days) -2.4 2.7 4.3 -2.1 1.1 3

Duration (days) -0.2 0.1 0.5 -0.2 0.1 0.4

Wet
  Season 

Baseflow

Magnitude 10th
  percentile (%)

-35.7 -16 12 -26.2 -5.2 10.8

Magnitude 50th 
percentile (%)

10.7 15 21.4 5.3 10.7 18

Timing (days) -22.5 -3.9 6.6 -13 -1 8

Duration (days) -42 -19.4 -4.2 -32.9 -15.2 -4.4

Peak Flow Annual peak
  magnitude (%)

18.3 38.8 58.3 13 24.6 35.4

Spring 
recession

Magnitude (%) 8.7 51.8 112.1 3.8 35.6 80.2

Timing (days) -53.1 -23.2 -1.9 -38.7 -15.8 -0.2

Duration (days) -9.6 -1.6 3.4 -5.8 -1 3

Recession rate of 
change (%)

-0.98 0.03 1.02 -1.22 -0.04 0.47

Dry Season

Magnitude 50th
  percentile (%)

-49.8 -21 -1.5 -45.2 -16.4 -1

Magnitude 90th 
percentile (%) 

-48.2 -9.9 55 -39.4 -1.8 36.7

Timing (days) -55.4 -24.5 -2.8 -35.2 -16.7 -2.9

Duration (days) 3.2 20.8 43 1.9 15.8 32

Annual
  Metrics

Average annual
  flow (%)

-0.9 5.9 10.3 -0.2 5.3 8.8

Coefficient of 
variation (%)

21.3 36.9 61 14.9 24 38.6
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Changes in duration of certain functional flow seasons are linked with changes in 

seasonal timing. Since dry season start timing generally shifts earlier while wet season start 

timing remains about the same, duration of the dry season is longer among more than half of 

sites, with an average increase of 21 days among sites under the RCP8.5 scenario (16 days under 

the RCP4.5 scenario). Wet season baseflow experiences a decrease in duration among more than 

half of models across sites, with moderate agreement. The average decrease is 19 days among 

sites under the RCP8.5 scenario (15 days under the RCP4.5 scenario). Both fall pulse duration 

and spring recession duration have little to no trend towards change, with a high to very high 

agreement in this outcome among models and sites. 

 

2.4.1.1 Part 2: Merced River case study 

In this analysis, shifts in temperature, precipitation volume, and precipitation variability 

were applied separately and in combination as a suite of 42 climate scenarios (scenarios 

described in SM), which were then routed to streamflow on the Merced River using the SAC-

SMA-DS hydrologic model. Given the consistency in direction of hydrologic change seen across 

the western Sierra Nevada in the regional analysis (Part 1), the results for the Merced River are 

expected to be representative of the direction of change anticipated for neighboring catchments 

in the western Sierras.  

Annual hydrographs for representative dry, average and wet years demonstrate how daily 

flow is altered by each climate parameter at its maximum level (Figure 2-6). The spring 

snowmelt pulse is the most strongly affected component of the annual flow regime across 

climate change scenarios. The temperature change scenario with 5°C increase affects the 

snowmelt pulse most prominently, both lowering the magnitude of the snowmelt pulse by more 
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than half and shifting the onset of the spring snowmelt recession earlier by several weeks. 

Lowered precipitation volume (30% decrease) also lowers the magnitude of the pulse to a similar 

extent, but does not significantly alter the timing of the spring recession. The temperature 

increase scenario also causes higher wet season peak flows by several thousand cfs in average 

and wet years. Similar increases in peak flow magnitude are caused by the scenarios that 

maximize precipitation volume (30% increase), precipitation event intensity, and interannual 

precipitation variability. Dry season timing is also influenced by the early onset of the snowmelt 

pulse flow, and occurs nearly a month earlier in the 5°C temperature increase scenario in average 

and wet years (Figure 2-6). 
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Figure 2-6. Annual hydrographs for dry, average, and wet years, modeled under climate perturbation scenarios 

where individual climate parameters are shifted to the maximum level. Magnitude and timing of the start of the 

spring recession and dry season are plotted, demonstrating shifts including a large decrease of spring recession 

magnitude in some scenarios. 

The eco-exceedance analysis provides further evidence that temperature was the most 

influential climate parameter, leading to the greatest exceedance of historical functional flow 

metric levels (Figure 2-7). Temperature-driven changes are by far the most pronounced in spring 

recession and dry season functional flows, with eco-exceedance reaching 20-30% in these 

components for the OAT scenario with highest temperature perturbation. Eco-exceedances due 

to temperature do not increase linearly, but begin to accelerate for spring recession and dry 
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season metrics after 3°C increase (Table SM5). Of the extreme end scenarios tested, those with 

maximum temperature experience the greatest eco-exceedances across nearly all functional flow 

metrics. Changes in precipitation volume or variability can also compound the effects of 

increased temperature. When adding maximum values of all three precipitation variability 

metrics (event intensity, seasonal variability, and interannual variability) to the warmest and 

driest future scenario, eco-exceedance of spring recession metrics increases by 10% and dry 

season eco-exceedance increases by 6% (to 39% total exceedance in both situations). In the mid-

range scenarios tested, combinations of temperature and all three precipitation variability metrics 

cause the greatest eco-exceedance. See Table SM5 for eco-exceedance values across all 

scenarios. 

Changes in precipitation volume primarily drive changes in peak flow (if volume is 

increased) or in dry season metrics (if volume is decreased). Eco-exceedances caused by 

precipitation volume are also not linear, but accelerate when the magnitude of precipitation 

volume change exceeds 20% increase or decrease (Table SM5). The degree of eco-exceedance 

from maximum precipitation volume change is roughly similar to the change caused at the 

maximum level of all variability shifts (event intensity, seasonal variability, and interannual 

variability), and eco-exceedance caused by combining precipitation volume decrease and 

variability increase is approximately additive. 
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Figure 2-7. Timing and magnitude functional flow metrics for four annual flow components. Metrics calculated 

from models with maximum perturbations of individual climate parameters and combinations of climate parameters. 

Control conditions are graphed as boxes representing full range and 10-90th percentile values of metrics. 

The mid-range climate scenarios explore outcomes when climate parameters are shifted 

to a lesser degree than the extreme end scenarios. These included temperature increases of 1.7-

3.4°C, precipitation volume changes of -10% to 10%, and precipitation variability changes "
#
 to !

#
 

of maximum calculated values. Dry season and spring recession metrics are again the most prone 

to eco-exceedance (up to 17%), with temperature as the most influential parameter. Peak flows 

also experience high eco-exceedance (up to 14%) in mid-range scenarios with increased 
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precipitation volume and variability. Individual precipitation variability parameters (event 

intensity, seasonal variability, or interannual variability) rarely cause eco-exceedance over 3% in 

any functional flow metric category, but the variability parameters combined with precipitation 

volume changes cause higher degrees of eco-exceedance than either of these climate parameters 

applied alone. Of the three precipitation variability parameters, interannual variability causes the 

greatest eco-exceedance when applied individually at the highest level, with 7.5% eco-

exceedance in dry season functional flow metrics and 4% eco-exceedance overall. 

 

2.5 Discussion 

This study quantifies expected changes in ecologically-relevant aspects of the annual flow 

regime across a wide range of possible temperature and precipitation changes in mountainous 

watersheds of California. The direction of changes in functional flow metrics is largely 

consistent across the Sierra Nevada study catchments, though the magnitude of change differs 

across models and sites and generally increases in the higher emissions scenario. The greatest 

changes in functional flow metrics across both study parts included longer dry season duration 

and lower dry season magnitude, earlier spring recession timing, and higher peak flow 

magnitude. In the Merced River case study, precipitation variability is found to compound 

streamflow changes caused by changes in temperature or precipitation volume, and the effects 

are often synergistic. 

2.5.1 Dominant climate drivers of streamflow change 

Results from the Merced River case study indicate that temperature change is the most 

influential driver of change in functional flow metrics. Given the high confidence in projected 
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increases in air temperature relative to precipitation changes both in the western US and globally 

(IPCC 2015), this finding suggests river ecosystems may be more at-risk due to streamflow 

changes than previously understood. Although many studies have connected air temperature 

increases with observed or anticipated changes in streamflow (Aldous et al. 2011; Mittal et al. 

2016; Musselman et al. 2021; Null et al. 2013), our analyses build on this relationship by 

assessing the interactions of temperature increase with other aspects of climate change. Changes 

in streamflow caused by changes in either temperature or precipitation volume are exacerbated 

by increases in precipitation variability and the effects are often synergistic. For example, the 

hydrologic dry season, one of the most impacted flow components across climate change 

scenarios, exhibits even longer and drier conditions when precipitation variability increases are 

combined with temperature increases. Other studies focused on drought in California also 

confirm that temperature is at least as influential on drought conditions as precipitation volume 

(Luo et al. 2017). The relative influence of temperature was found to decrease at lower 

elevations however, demonstrating the importance of temperature for high elevation watersheds 

and confirming the need to study the complex interactions of temperature and precipitation. 

The use of three unique climate parameters describing precipitation variability at event-, 

seasonal-, and interannual-scales allowed for further assessment of the aspects of precipitation 

change that may most influence future flow conditions. Interannual precipitation variability, the 

climate parameter representing greater extremes between wet and dry years, causes the most 

functional flow metric change compared to the other precipitation variability metrics. Greater 

extremes between wet and dry years is anticipated with climate change in California, and has 

already been experienced in the last decade with the abrupt shift from the drought of 2012-2016 

to the record-breaking winter of 2017 (Mallakpour, Sadegh, and Aghakouchak 2018; Persad et 
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al. 2020; Swain et al. 2018). The extreme variability scenario, which combines all precipitation 

variability metrics (event intensity, seasonal variability, and interannual variability) to their 

highest values while keeping average precipitation relatively constant, causes similar levels of 

eco-exceedance to changes in precipitation volume of either -30% or 30%. For example, the 

extreme variability scenario produced similar levels of dry season eco-exceedance as a 30% 

precipitation reduction, as well as similar levels of peak flow eco-exceedance to a 30% 

precipitation increase. Although GCM forecasts for California are highly uncertain about change 

in annual total precipitation (Persad et al. 2020), expected changes in variability alone may have 

similar ecological effects to a drastic increase or decrease in total precipitation. 

While the focus of this study was on the potential changes to functional flow metrics 

caused by model perturbations representing climate changes and not the internal hydrologic 

model storages and fluxes, below we discuss expected hydrologic drivers of our results. 

Hydrologic processes related to snowpack accumulation and melt, soil moisture, and runoff are 

all likely to have influenced the simulated streamflow changes (Schwarz et al. 2018). Rising 

temperatures influence snowpack by both increasing the proportion of precipitation falling as 

rain versus snow, and hastening the melting off of snowpack in the spring (Stewart 2008), as our 

results show with higher temperature alone advancing the onset of the spring recession by 

several weeks in the Merced River Basin. However, wetter conditions (i.e. higher precipitation 

volume scenario) tend to delay the onset of the spring recession and dry season baseflow (Figure 

2-6), so it is possible that increased precipitation in the future could occasionally mask changes 

in snowmelt rate caused by warming. By contrast, drier conditions (i.e., lower precipitation 

volume scenario) accelerate the onset of spring recession and dry season baseflow timing 

independently of temperature increases (Figure 2-6). Snowpack persistence and melt time is also 
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important in sustaining river flow during the summer dry season (Godsey, Kirchner, and Tague 

2014), and our regional analysis results suggest that reduced snowpack will contribute to dry 

season baseflows with lower magnitude by 16-21% and longer duration by 2-3 weeks, beginning 

earlier in the summer. Temperature is again an important driver in changes to dry season 

hydrology, likely due to both snowpack effects in the spring and higher evapotranspiration rates 

during warm periods, which can reduce soil moisture and dry season baseflow magnitude. In our 

Merced River case study, a temperature increase of 5°C causes more change to dry season 

conditions than a 30% reduction in precipitation volume. Precipitation variability, especially in 

the form of longer dry spells during warmer months, may compound dry season conditions by 

further increasing soil moisture deficits. Mounting soil moisture deficits are expected to 

accompany and follow prolonged dry periods in the western U.S. independent of annual 

precipitation changes, due to an increased proportion of evapotranspiration in the water budget 

compared to historical conditions (Cayan et al. 2010). In the Merced River case study, changes to 

precipitation event intensity (one of three precipitation variability scenarios) altered dry season 

baseflow metrics to the same extent as a 10% precipitation volume reduction, and caused similar 

increases in peak flows to a 30% increase in precipitation volume. These results are partly due to 

the concentration of precipitation into the wet season caused by the increase in event intensity. 

Intense storms also tend to exceed soil infiltration capacity to greater extents than low-intensity 

rainfall events, causing more runoff in a single event and less soil moisture replenishment (R. E. 

Horton 1941). In the high event intensity scenario, this increase in runoff is paired with less 

rainfall and soil infiltration outside of the wet season, reducing dry season baseflows by as much 

as 47%. Our findings related to precipitation variability interactions expand on studies by (T. E. 
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W. Grantham et al. 2018) and (Schwarz, Ray, and Arnold 2019) focused on temperature  and 

precipitation volume impacts alone. 

Although the maximum projected changes in climate parameters would result in serious 

ecological consequences, it is important to balance these potential outcomes with the possibility 

of less extreme climate outcomes. Functional flow metrics exhibit generally the same direction 

of change in RCP4.5 and RCP8.5 emissions scenarios, but the magnitude of these changes is 

often less severe in RCP4.5 scenarios. This clearly aligns with the importance of temperature 

increase on streamflow patterns found in our study system. Differences in emissions scenarios 

appear in metrics indicating stream flashiness; annual peak flow increases an average 25% in 

RCP4.5 scenarios, whereas models under the RCP8.5 emissions scenario see an average increase 

of 40%. Likewise, change in CV is markedly lower under the RCP4.5 scenario, at an average of 

25% versus 37% under the RCP8.5 scenario. The wide range of potential outcomes produced by 

the different models under each emissions scenario also demonstrates that, if the least sensitive 

projections play out, shifts in certain functional flow metrics could be slight. The timing of the 

spring recession and dry season, which are greatly affected in some model outcomes, would 

experience change of only 2-3 days on average in the models producing the least change. This 

full range of outcomes reveals the uncertainty of aquatic ecological consequences from climate 

change, although the high end of potential change can help guide proactive mitigation of the 

most extreme effects. Although our results are supported by the use of two modeling approaches, 

it is possible that different hydrologic modeling strategies (e.g., Budyko models or stochastic 

models) could produce different outcomes or magnitudes of change in functional flows. With the 

high variability in projected changes to California climate, especially regarding precipitation 
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variability, it will be important to confirm our initial findings with further research on the 

potential outcomes of climate change on California's streamflow. 

 

2.5.2 Predicted changes in functional flows and potential ecological 

consequences 

Across both the GCM-based regional analysis and the decision scaling analysis on the 

Merced River, the dry season and spring recession functional flow components stand out as 

substantially impacted by future climate scenarios. Peak flows and variability in the annual flow 

regime (measured by CV) are also highly susceptible to increases in future climate scenarios, 

although to a lesser degree. The dry season and spring recession are highly influenced by annual 

snowmelt, which is widely understood to be declining and occurring earlier across the 

mountainous western North America due to decreased winter snow accumulation and a shift in 

precipitation phase from snow to rain (Lundquist et al. 2009; Mote et al. 2018; Stewart, Cayan, 

and Dettinger 2005). Storms and subsequent peak flows, often caused by atmospheric river 

events on North America’s west coast, are already increasing in severity across western North 

America (Das et al. 2011; Gershunov et al. 2019). These functional flow components and the 

species most dependent on them are considered particularly vulnerable as expected changes in 

snowmelt runoff and storm severity continue.  

Flow metrics related to the spring recession and dry season flow components exhibit the 

most substantial changes across both RCP4.5 and RCP8.5 emissions scenarios in the Sierra 

Nevada analysis, and particularly in temperature increase scenarios in the Merced River case 

study. Timing of both flow components shift significantly earlier across models in both 
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emissions scenarios; the average timing of spring recession and dry season start dates shifts 3-4 

weeks earlier in the RCP8.5 future period of 2035-2100 (2-3 weeks earlier in RCP4.5). These 

changes in seasonality could affect entire ecosystems, and may be evident through impacts to 

species such as amphibians that breed during snowmelt recession flows (Yarnell, Viers, and 

Mount 2010), migratory salmonids (Keefer, Peery, and Caudill 2008), and riparian vegetation 

that requires both gradual snowmelt flow declines and sustained dry season baseflows to 

establish (Mahoney and Rood 1998). Several changes anticipated for the dry season in California 

streams may compound to create severe conditions for riverine species during dry years. Results 

from the Sierra Nevada watersheds indicate that dry season flow magnitude will decline while 

the duration could increase anywhere between a few days and several weeks. These conditions 

could threaten coldwater species such as anadromous salmonids, which have evolved a 

migratory life history to avoid exposure to warm stream temperatures during summer months (P. 

B. Moyle et al. 2013). Annual peak flows and stream flashiness, as measured by CV, were also 

found to increase across most models and catchments. A periodic disturbance regime of high 

flows may be beneficial for creating new habitat and inundating floodplains in California streams 

(Junk, Bayley, and Sparks 1989; Lytle and Poff 2004). However, if frequency or magnitude of 

flood flows exceeds historic occurrence, excessive scouring could cause channel degradation and 

incision (Simon and Rinaldi 2006). Increases in scouring flows could also harm stream 

macroinvertebrates, which are vulnerable to effects of shear stress (Puijalon and Bornette 2013).  

While a growing body of research anticipates the effects of climate change on river 

ecosystems, these effects must be contextualized in the existing state of alteration of most 

populated watersheds (Guitron 2020). In present conditions, human impacts on aquatic 

ecosystems such as dams and diversions often create much greater hydrologic alterations than 
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the gradually changing flow patterns accompanying climate change (Dyer et al. 2014; Liang et 

al. 2015; Mittal et al. 2016). In some systems, the primary effects of climate change may be 

human responses in water management, such as an increase in dry-season diversions to offset 

increasing frequency of droughts. Changing stream conditions may also compound alterations 

already caused by dams, impoundments, and urbanization (Dey and Mishra 2017). In addition to 

severe worldwide threats from freshwater habitat alteration (Vorosmarty et al. 2010), river biota 

may be especially vulnerable to climate change because of their limited mobility to migrate as 

environmental conditions shift (O’Briain 2019). 

 

2.5.3 The functional flows approach 

Applying a functional flows approach  (Escobar-Arias and Pasternack 2010; Yarnell, 

Viers, and Mount 2010) enabled us to explicitly link a suite of potential climatic changes to 

potential ecological effects. This study identified for the mid-elevation Sierra Nevada that the 

functional flows most vulnerable to climate change are the dry season, the spring recession, and 

peak flows. Within these functional flows, specific metrics were particularly vulnerable to 

change. For example, the magnitude and start timing of the spring recession shifted considerably, 

while the duration and rate of change were less affected. Conversely, most dry season metrics 

including median magnitude, start timing, and duration, were highly sensitive to climate changes. 

The approach also identified functional flow components relatively unaffected by changing 

climate conditions, which included the fall pulse flow and certain aspects of the wet season. Each 

of the functional flow characteristics identified as vulnerable to climate change in this study can 

be linked to ecological functions for the western Sierra Nevada study region to serve as a guide 
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for mitigation strategies. This prioritization of management needs according to functional flows 

could help focus conservation efforts on at-risk ecological functions. This would allow water 

managers to anticipate the effects of climate changes on river ecosystems and more efficiently 

allocate resources to mitigate consequences. 

 

2.5.4 Management Implications 

While dams have profoundly altered streamflow regimes and disrupted native fish 

assemblages in California and globally (L. R. Brown and Bauer 2010; Vorosmarty et al. 2010), 

flow regulation may also provide an opportunity to recreate natural flow patterns and buffer 

stream biota from impending climate changes (Kondolf, Podolak, and Grantham 2013). In 

historically snowmelt-driven systems, dam outflows can be adjusted to provide spring recession 

flows with the timing, magnitude, and rate needed to protect native biota based on the functional 

flows. On the Truckee River, a snowmelt-fed system in the eastern Sierra Nevada, dam 

regulation to preserve spring recession flows has proven successful for enhancing native trout 

and riparian cottonwood populations (S. B. Rood et al. 2003). In streams with low dry season 

baseflows, further decreases in dry season flow due to climate change, as found in this study, 

could strand fish or create no-flow periods. Allocating reservoir releases to support instream 

flows during dry periods is a potential adaptation strategy, although this could create conflict 

with agricultural water needs, which are also greatest during dry periods (Aldous et al. 2011). 

Reservoir releases of cold water to support instream flow conditions during dry periods may 

provide the added benefit of buffering coldwater species such as salmon from climate change-

induced warming (Null et al. 2013). As climate change continues to threaten vulnerable 
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freshwater ecosystems, dam regulation (potentially up to and including dam removal) may 

become an increasingly necessary strategy to preserve freshwater biodiversity. 

 

2.6 Conclusions 

The results of this study demonstrate how ecologically relevant aspects of the annual flow 

regime are expected to shift in mid-elevation seasonally snowmelt-dominated catchments in 

California. This study represents the first utilization of the SFDA to analyze climate change with 

a functional flows approach. The combination of two very different approaches in climate 

change research - GCM analysis and decision scaling - allowed for a robust investigation into 

both physically-based future climate scenarios, and the individual climate parameters that most 

strongly influence streamflow. The precipitation variability component of our decision scaling 

gave new insight into event-, seasonal-, and interannual-scales of precipitation variability, and 

demonstrated how it may compound climate change effects caused by temperature increase or 

precipitation volume change. The direction of future changes in streamflow are found to be 

relatively consistent across the western Sierra Nevada although the magnitude of changes will 

depend on rates of human emissions in the future, as shown by the differences in functional flow 

metric outcomes between RCP4.5 and RCP8.5 scenarios. We found temperature to be the most 

influential aspect of climate change affecting ecologically-relevant streamflow, although 

precipitation variability magnified changes caused by temperature increase. The greatest changes 

in ecologically-relevant streamflow manifested as longer and drier dry season conditions, earlier 

snowmelt pulse, and higher magnitude peak flows. Findings from this research are informative 

for water managers considering methods to buffer freshwater biota from the potentially harmful 
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effects of climate change, and this approach demonstrates how to combine multiple analytical 

methods for an improved understanding of various aspects of climate change on freshwater 

ecosystems. The analytical approach used in this study can serve as a model for combining 

different approaches in hydroclimatic studies to better understand both the drivers and outcomes 

of streamflow change in a warming climate. 

 

2.7 Data Availability 

All software created by the authors for this publication, including processed data and 

figures, is available as an archived Github repository at 

https://zenodo.org/badge/latestdoi/444150938, via DOI: 10.5281/zenodo.5815719 

\cite{patterson_2022}. The software is copyrighted under the MIT license. We thank Iman 

Mallakpour for providing daily streamflow projections for sites across northern California, which 

were developed by Scripps Institute of Oceanography (http://loca.ucsd.edu/).  We also thank Ben 

Livneh and colleagues for making their gridded hydrometeorological dataset publicly available, 

which we used for decision scale modeling in the Merced River Basin (Livneh et al. 2015). We 

are also grateful to Wyatt Arnold for providing access and guidance for using the SAC-SMA-DS 

model (Schwarz et al. 2018), archived publicly at https://gitlab.com/cadwr-climate-change/sac-

sma-decision-scaling. Each dataset used for this study is publicly available. 
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Chapter 3  

 

Dendrochronology reveals the response of  a 

riparian forest to water management policies 

in an arid basin 
 

 

 

 

 

 

 

3.1 Abstract 

Riparian corridors in arid climates sustain life in otherwise inhospitable environments, 

creating zones of ecological and cultural importance. However, rivers in arid climates are often 

managed to provide water for human populations at the expense of a river’s freshwater 

biodiversity. Environmental flows are an increasingly common tool for supporting ecosystems 

on regulated rivers, though their usefulness is best understood by linking streamflow to measured 

ecological response. In this study, ecosystem response to environmental flows is assessed using 
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mature cottonwood tree-ring growth and carbon isotope concentrations as bio-indicator proxies 

for river ecosystem health. We examine the ecological impacts of environmental flows on the 

Lower Truckee River, in Nevada, USA, an arid climate river that has been subject to decades of 

heavy diversion and management. Tree-ring width and carbon isotope concentrations in tree-ring 

tissue provide two separate proxies for tree response to water availability. Annual flow records 

upstream and downstream from the river’s primary diversion point are assessed with a recently 

developed tool providing functional flow metrics to quantify changing in streamflow patterns. 

Most long-lived trees downstream of diversions responded strongly to changes in flow 

management, with significant increases in health proxies and growth increases of 157%. Dry 

season flow magnitude had the strongest influence on cottonwood growth out of the tested 

functional flow metrics, although modeling indicated a strong influence of factors outside of 

streamflow. Not all trees within a floodplain respond similarly to changes in flow metrics, 

suggesting that trees may draw from different water sources. Results offer promising evidence 

that environmental flows can lead to measurable improvement in riparian forest productivity, 

although site-specific considerations including channel form and location on the floodplain are 

important in determining response to changes in flow patterns.  

 

3.2 Introduction 

Rivers worldwide and particularly in arid environments have experienced profound levels 

of human alterations that affect flow patterns, channel form, and species composition (Grill et al. 

2019; Kondolf, Podolak, and Grantham 2013; Vorosmarty et al. 2010). River alterations 

commonly resulting from dams, such as disruption of natural flow, sediment, and chemical 
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regimes, threaten freshwater biodiversity on continental and global scales (Maavara et al. 2020; 

Magilligan and Nislow 2005; N Leroy Poff et al. 2007). River ecosystem health depends on 

numerous interacting physical and biogeochemical processes involving flow, sediment and 

temperature regimes, water quality, channel form and floodplain connection, and vegetation 

composition (N. LeRoy Poff and Ward 1989; Wohl et al. 2015). Native species with sensitive 

habitat requirements, known as bio-indicators, are therefore often used to gauge the health of 

altered river ecosystems, because these species respond to a wide range of environmental 

influences that determine their abundance (Huang et al. 2013; Norris and Thoms 1999). Pairing 

bio-indicator abundance with physical habitat indicators such as streamflow metrics creates a 

more robust measurement of river ecosystem health and effects of alteration.  

Trees are a particularly useful bio-indicator; through annual growth rings trees record their 

response to environmental conditions across their lifetime, which can range from decades to 

centuries. In arid environments where water availability is a limiting growth factor, tree-ring 

widths tend to correlate with water availability, recording a tree’s response to drought conditions 

(Meko et al. 2015). Cottonwood trees (Populus spp.) dominate floodplain habitats in many arid 

regions of the Northern Hemisphere (Friedman et al. 2005), and their extent covers most of the 

United States and Canada (Cooke and Rood 2008).  Cottonwoods can be an excellent bio-

indicator species for ecohydrological analysis, because their life history and growth are closely 

tied to flow regime patterns, providing an ecological record of past hydrologic conditions on the 

floodplain (S. Rood et al. 2013). Cottonwood trees are also a keystone species of floodplains 

across North America, providing habitat, food sources, and temperature regulation of riparian 

and instream ecosystems (Cooke and Rood 2008; Hillman et al. 2016; Beechie et al. 2010). 
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Cottonwood trees in arid regions tend to be facultative phreatophytes, meaning they are 

deep-rooted and rely on groundwater for survival, such as river-supported groundwater (Rood, 

Bigelow, and Hall 2011). Cottonwoods cannot survive long without continuous access to root 

water, and mortality has been documented on numerous occasions where cottonwoods lost 

access to a stable water supply (Foster, Mahoney, and Rood 2018b; Rood, Braatne, and Hughes 

2003; Schook et al. 2020; Scott, Shafroth, and Auble 1999; Stella et al. 2013). In addition to 

river-supported groundwater, cottonwoods have been found to source water from shallow soil 

water delivered through precipitation or overbank flooding (Phelan, Pearce, and Rood 2022). 

Plasticity of rooting structures within species indicates an ability to adapt to local water 

availability (Rood, Bigelow, and Hall 2011). 

In arid regions, cottonwood growth rings often correlate with streamflow availability 

(Schook et al. 2016; Foster, Mahoney, and Rood 2018b), although this relationship is not 

conclusive in all studies (Scott et al. 1999, St. George 2014). Other cottonwood bio-indicator 

metrics such as the ratio of 13C to 12C in tree-ring cellulose are related to water stress in arid 

environments, and can be used alongside ring widths to improve understanding of biological 

response to water availability (Schook et al. 2020). Studying cottonwood-flow interactions gives 

insight into what river conditions are favorable for riparian ecosystems, which is especially 

instructional in human-managed river systems.  

Streamflow metrics can be paired with bio-indicators to better understand how particular 

aspects of streamflow affect river ecosystems. Selecting appropriate streamflow metrics to assess 

river ecological status and set restoration targets has been the focus of many studies (Poff et al. 

1997; Carlisle et al. 2017; Olden and Poff 2003; Yarnell et al. 2020). Functional flows theory has 

emerged in recent years as an approach to understanding river flow and alterations by linking 
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specific components of annual flow regimes to ecology-supporting functions (Escobar-Arias and 

Pasternack 2010; Yarnell et al. 2020). Functional flows refer to the magnitude, timing, duration, 

frequency, or rate of change of specific seasonal flows, and support processes such as habitat 

formation and sediment movement, maintenance of chemical and temperature regimes, and life 

history cues such as migration and spawning (Yarnell et al. 2020). In California, functional flows 

have been applied to distinguish natural flow regimes (Patterson et al. 2020), to predict 

functional flow requirements for ungaged streams (Grantham et al. 2022), and have been paired 

with macroinvertebrate abundance metrics to assess hydrologic alteration (Steel et al. 2018).  

An important application of river health assessment is designing or evaluating 

environmental flow programs. Environmental flows are prescribed streamflow patterns on 

regulated rivers meant to sustain river ecosystems while balancing human water needs 

(Arthington et al. 1992; Glenn et al. 2017). Restoration of riparian corridors and fisheries have 

been attempted on dammed rivers using environmental flow programs, though results are often 

mixed (Glenn et al. 2017; Konrad et al. 2011; Olden et al. 2014). In some cases, insufficient 

monitoring of river health takes place following environmental flow implementation, which 

limits the ability to adapt and learn from these experimental flows (Glenn et al. 2017). 

The objective of this study is to assess ecosystem response to environmental flows using 

mature cottonwood tree-ring growth and carbon isotope concentrations as bio-indicator proxies 

for river ecosystem health. We examine the ecological impacts of river diversions through 

various periods of flow regulation, including the return of streamflow after decades of heavy 

diversion. We ask three research questions, outlined in Table 3-1.  

 

Table 3-1. Research questions and testing.  
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Research question Analytical method Quantitative test to answer 
research question 

Q1. Among 16 total 
functional flow metrics, 
which were most 
affected by river 
diversions and 
subsequent 
environmental flows? 

Regime shift analysis on 
each functional flow metric 
time series to determine the 
year of greatest shift and 
degree of change, in 
percent and absolute value. 

Functional flow metrics are ranked 
by the percent magnitude of their 
regime shift and interpreted by this 
ranking.  

Q2. How strong was the 
response of mature 
cottonwood trees to 
environmental flows, 
comparing between 
trees upstream and 
downstream of primary 
river diversions? 

Tukey’s Honestly 
Significant Difference test 
applied to determine 
significant changes in 
growth or carbon isotope 
discrimination before and 
after 1973 (for DS trees) or 
1982 (for US trees). 

A significant increase or decrease 
response from a majority of trees is 
interpreted as a strong response. A 
significant increase or decrease 
among 25-50% of trees is considered 
some response. Less significant 
response than this is interpreted as no 
clear response from trees.  

Q3. What aspects of 
streamflow and climate 
are the most influential 
on mature cottonwood 
growth? 

Bayesian hierarchical 
model developed to relate 
cottonwood growth with 
potential environmental 
influences. 

For output parameter distributions, 
record the percentage of parameters 
whose 95% credibility range does not 
overlap with zero across the 82 tested 
trees. Significance above 10% is 
considered relatively high influence, 
from 5-10% is considered moderate 
influence, and below 5% is 
considered low influence.   

Q4. How do different 
periods of flow 
regulation affect the 
influence of streamflow 
and climate on mature 
cottonwood growth? 

Bayesian hierarchical 
model parameters are 
categorized by regulation 
period before and after 
1973 (for DS trees) or 1982 
(for US trees) so that 
differences in parameter 
values can be compared. 

Compare the percent significant 
response calculated in Q3 between 
tree growth in periods before and 
after 1973/1982. When the difference 
in percent significance for a given 
parameter is double or higher, this is 
considered a large difference in 
influence between regulation periods. 
A difference between 25-50% is 
considered some difference in 
influence between regulation periods, 
and less than this is interpreted as no 
clear difference between regulation 
periods.    
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We hypothesize that increases in streamflow following decades of heavy diversions caused 

sustained shifts in functional flow metrics, leading to measurable improvements in mature 

cottonwood growth and health. We expect that metrics describing the spring recession and dry 

season will have a significant influence on cottonwood growth, since these flows may affect 

growing season conditions. 

 Our functional flow approach to assessing streamflow, paired with annual tree-ring 

width, will allow for a seasonal-scale analysis of flow and ecological effect in a level of detail 

not before possible. The additional measure of carbon isotope concentrations in tree-ring wood 

adds strength to the analysis and may reveal tree responses not apparent from tree-ring width 

alone. While many systems have been studied for the ecological effects of stream dewatering, 

this study system offers the unique opportunity to investigate the effects of both dewatering and 

the reintroduction of streamflow through environmental flow policies.  

 

3.3 Methods 

3.3.1 Study Area 

The Truckee River is an interstate river crossing through California and Nevada, USA, 

acting as a link between its source in the northern Sierra Nevada mountains and its terminus at 

Pyramid Lake in the Great Basin Desert (Figure 3-2). The river supports riparian ecosystems 

along its entire 195-km length, but the environment shifts dramatically as the river passes east of 

Truckee Meadows into the rain shadow of the Sierra Nevada. Mean temperature in this area 

ranges from 0oC in January to 23oC in July, though temperature increases are apparent over the 
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last thirty years (Figure 3-1). Mean annual precipitation varies from 50 in/year in the basin’s 

Sierra Nevada headwaters to 7 in/year in the desert east of Reno, NV.  

On the 95-km river segment downstream of Reno, known as the Lower Truckee River, 

the river is low-angle, alluvial, and meandering, although portions of the channel have been 

straightened and entrenched for flood control (US Army Corps of Engineers 1995). Average 

annual river flow at the Reno, NV USGS gage (#10348000) is about 20 cms, and peak flows (in 

the top 5th percentile) reach above 70 cms. These highest magnitude floods are primarily caused 

by heavy rainfall or rain-on-snow events (Adams 2012). In the vegetated reaches of the Lower 

Truckee River, Fremont cottonwoods and willows populate the riparian corridor. Cottonwoods 

serve as the only native tree and the foundational species of the lower river’s floodplain habitat.  

The Truckee River has been subject to more than a century of heavy flow modifications 

(US Army Corps of Engineers 1995; Gourley 1998; Kramer 1988). Several dams regulate flow 

on major tributaries of the Truckee River and together have a significant effect on mainstem 

flow. The largest flow alteration on the lower river is the Newlands Irrigation Project, 

constructed in 1905, which diverts flow at Derby Dam to agricultural areas in the Carson Valley 

to the south. Diversions for agriculture continued uncontested for several decades, causing the 

Lower Truckee River to run dry annually (Kramer 1988). 

By the 1970’s, the Lower Truckee riparian corridor had experienced considerable 

ecological decline. The previously expansive riparian cottonwood forests had diminished to 

leave only discontinuous relict stands, without new cohorts to replace aging trees (Rood et al. 

2003). Prolonged river diversions also caused Pyramid Lake levels at the river’s outlet to drop 

severely, bringing native cui-ui fish and Lahontan Cutthroat Trout nearly to extinction (Gourley 

1998).  
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At this time, increased attention to the river system’s ecological damage began leading to 

policy changes to promote restoration. In 1973, a lawsuit by the Pyramid Lake Paiute Tribe 

resulted in the Gesell Opinion (U.S. District Court in Washington, D.C.), which required all river 

flows beyond allocations for the Newlands Project to remain instream to support Pyramid Lake 

and its fisheries (Horton 1997; Kramer 1988). This achievement resulted in significant increases 

in flow along the final 60 km of the river, and mostly ended the seasonal dewatering of the river 

in this corridor (Figure 3-1). In 1982, an additional landmark lawsuit filed by the Pyramid Lake 

Paiute Tribe led to the implementation of an environmental flow regime operated from Stampede 

Reservoir, a major tributary dam, to support Pyramid Lake fisheries with enhanced spring 

snowmelt flows (Kramer 1988). In the 1990’s, these spring recession flows were refined with a 

deliberate ramping rate to achieve a water stage decline of approximately 1 cm per day (Rood et 

al. 2003). This rate was designed to support cottonwood seedling survival according to the 

cottonwood recruitment box model (Rood et al. 2003). Both 1973 and 1982 marked historic 

changes in the Lower Truckee River’s regulated flow regime. These dates are therefore used as a 

focus in streamflow and dendrochronological analysis in this study. 

Since establishment of the environmental flow regime, aerial imagery has recorded 

remarkable recovery of riparian cottonwood populations through new seedling recruitment, 

especially where paired with physical channel restoration (Rood et al. 2003). For example, The 

Nature Conservancy implemented restoration projects in the study area between 2003-2006 

(Peternel-staggs, Saito, and Fritsen 2008). These restoration efforts focused on channel grading 

to raise the streambed, re-establishment of meandering, creation of side pools, and native 

revegetation, with a goal of laterally reconnecting the channel and floodplain (Peternel-staggs, 

Saito, and Fritsen 2008).  
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Figure 3-1. Annual temperature, streamflow, and precipitation patterns for the Lower Truckee River since 1950. 

Streamflow is plotted for gages above and below Derby Dam, the river’s primary diversion point.  

 

3.3.2 Experimental Design 

The four study questions (Table 3-1) are addressed by analyses on either functional flow 

metrics or tree-ring derived data. Along with these primary analyses, some supporting data 

analysis and visualization is also described below in more detail.  
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3.3.3 Site Selection 

Study sites were selected at five separate cottonwood groves along the Lower Truckee 

River to compare ecological response across varying hydrologic influences (Figure 3-2). Three 

sites are above Derby Dam, the river’s primary diversion point, and two sites are below. All five 

sites are downstream of Stampede Reservoir. Of the three upstream sites, sites US-1 and US-2 

are at The Nature Conservancy’s channel restoration sites, while site US-3 is near the Ranch 102 

restoration area but has not undergone any physical channel restoration. 

The two downstream sites, DS-1 and DS-2, are both on Pyramid Lake Paiute Tribe land. 

The two sites are 30-km apart. They have distinct channel form and substrate compositions 

although their flow patterns are similar. Site DS-1 is along a single-strand, somewhat narrow 

portion of river channel, with cobbles present on the point bar. DS-2 is along a slightly wider 

portion of river with a sandbar present, with finer sand substrate on the floodplain based on 

observation.  
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Figure 3-2. Map of the Truckee River Basin, with cottonwood field sites marked. The Truckee River flows from 

Lake Tahoe northeast to Pyramid Lake, and the Lower Truckee River begins downstream of the Reno metropolitan 

area. The upstream sites are labeled US-1-3, in order from upstream to downstream, and the downstream sites are 

labeled DS-1 and DS-2, also from upstream to downstream.  

 

3.3.4 Hydrology and Climate Data 

Daily streamflow data for the Lower Truckee River was available from long-term USGS 

streamflow gages above and below the Derby Dam diversion point (Figure 3-2). Above Derby 

Dam, gages representing flow at the upstream sites is primarily drawn from the Truckee River at 
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Vista (#10350000), with some gaps in the record filled with the nearby Reno gage (#10348000) 

using a linear regression (r2 = 0.975). Flow representing the downstream sites comes from the 

Truckee River gage below Derby Dam (#10351600). After filling gaps, both gages had periods 

of record beginning in 1918 that were analyzed until 2019 to align with collected tree-ring data.  

Daily flow data was processed using the Seasonal Flows Detection Algorithm using 

parameters adjusted for the Low Volume Snowmelt and Rain natural flow class to calculate 18 

annual functional flow metrics (Patterson et al. 2020). These metrics describe the magnitude, 

timing, duration, frequency, and rate of change of five functional flow components identified for 

Mediterranean climate regions: 1) fall pulse, 2) wet season baseflow, 3) peak flows, 4) spring 

recession, and 5) dry season baseflow that each serve ecological purposes as described in 

(Yarnell et al. 2020). The functional flow components and associated functional flow metrics 

used in this study are visualized in Figure 3-3. 
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Figure 3-3. Five functional flows (boxes) for a mixed snowmelt-rain runoff regime typical of the mid-elevation 

Sierra Nevada region capture aspects of the hydrograph most relevant for ecological systems. Functional flow 

characteristics corresponding to each component are shaded, and metrics used in this study are marked with an X. 

Figure adapted from Yarnell et al. (2020). 

 

In addition to daily streamflow data from gages, this study measured water surface 

elevations at each site approximately monthly in 2020 to develop a stage-stage rating curve. 

These curves were created by pairing gage height at the nearest USGS gage station with water 
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level measurements at each field site (Figure 3-4). The stage-stage curves were used to ensure 

that water level measured at long-term gaging stations would be a reasonable representation of 

conditions at each study site. Plots of the stage-stage curve for each study site are in the 

Supplemental Materials. 

Two shallow groundwater wells were installed on the floodplain near the river’s edge, 

one above Derby Dam at US-2 and one below at DS-1. The wells were instrumented with 

unvented data loggers (Level Troll 400, In-Situ, Inc.) to measure water level at 15-minute 

intervals. An In-Situ BaroTroll was installed at one of the sites to adjust water level 

measurements for atmospheric pressure. Data from the shallow wells allow a direct connection to 

actual tree-available water and how it fluctuates along with river water level. These findings are 

included in the interpretation of our modeling to link tree growth to river flow. 

 

Figure 3-4. Schematic of the study field sites and the potential water sources available to floodplain cottonwoods. 

Shallow roots may have access to soil water recharged from precipitation, and deep roots access river-supported 

groundwater or the capillary fringe. Continuous groundwater monitoring at shallow wells was performed at two 

sites, and periodic measurements of river surface water level were taken at all sites.  
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3.3.5 Dendrochronology 

Tree cores were collected from the five sites along the Lower Truckee River during the 

summer of 2020. Cores were collected from about 20 trees at each site, for 100 total individuals. 

Subsequent inspection of tree-rings and quality control required removing 18 cores, lowering the 

final total to 82. Trees were selected for coring from those present across the width of the 

floodplain while walking from the channel to the outer edge of the cottonwood forest, so that 

selected individuals included a full range of distances from the channel. An effort was made to 

include the largest trees at each site, although measured trees included a variety of sizes. We 

prioritized selection of healthy, straight trees without apparent signs of damage, but selection 

was otherwise random. Information collected for each tree included GPS coordinates, recorded 

to 5 decimal places with GAIA GPS software on a smartphone (v2022.7, GAIAGPS.com), 

diameter at breast height, and a categorical assessment of crown fullness. Trees were revisited in 

the spring of 2021 when flowers were visible to also identify sex of each tree, although many of 

the trees did not have visible flowers and could not be sexed. 

We cored trees with a 5.15mm-diameter Haglof increment borer at the lowest level on the 

trunk permitting borer handle rotation. Duplicate cores were taken at roughly 25% of trees at 

each site. Collected cores were mounted on wooden mounts and sanded with progressively finer 

grits down to 30 microns. Prepared cores were then cross-dated using skeleton plots (Stokes and 

Smiley 1968), followed by ring width measurement using a dissecting microscope and Velmex 

sliding scale with MeasureJ2X software. Ring width results were quality controlled using 

COFECHA, achieving series intercorrelation values of 0.3-0.6 for each site (Holmes 1983). 
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We then converted the resulting radial increment measurements to basal area increment 

(BAI), as BAI tends to remain constant over time, while radial increments decrease over time as 

tree diameter increases. BAI was calculated using measured trunk diameter and radial increments 

in the dplyr package in R (A. G. Bunn 2010). Bark width was removed from dbh measurements 

using a regression of bark width and dbh created from a sample of trees measured across the 

study area. 

Because cottonwoods’ trunks become buried over time by floodplain deposits, the earliest 

rings on record from ground-level increment boring can be considered a lower limit on tree age, 

with a high likelihood that full excavation methods would reveal additional rings and an earlier 

establishment age. Since the goal of this study was to examine growth and stress over time, and 

not to assess establishment conditions, we use growth records as measured without extra efforts 

to determine establishment date. 

 

3.3.5.1 Stable carbon isotope discrimination 

A subset of tree cores were tested for stable carbon isotope discrimination (Δ13C) in 

individual growth rings (n=402). Trees from US-1, US-3, and DS-5 were used for testing 

because these sites had the best series intercorrelation. The four best-correlated, longest-lived 

trees at each of the three sites were selected for a pooled site measurement of Δ13C across the 

trees’ shared growth period (54-90 years each). Between four and six trees is considered a 

reliable sample size for Δ13C measurements (Leavitt 2010). 

In addition to the pooled sampling strategy, two trees from the US-3 pool were measured 

individually. The individuals were located in two different areas of the floodplain, one close to 

the channel and one further out on the floodplain by about 25 meters. These two trees were 
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measured individually so that potential differences in Δ13C could be examined based on 

floodplain location. 

To prepare samples for testing, purified cellulose was extracted from ring wood samples 

to remove potential age effects that can occur when testing raw wood samples (Friedman et al. 

2019). ɑ-cellulose extraction was performed using an adaptation of methods from Leavitt and 

Danzer (1993) and Rinne et al. (2005). Samples were packaged in 4×6mm tin capsules and 

analyzed at the University of California, Davis Stable Isotope Facility using continuous flow 

ratio mass spectrometry with a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ 

Europa 20-20 mass spectrometer. Final delta values were reported relative to the Vienna Pee Dee 

Belemnite international isotope reference according to the equation: 

 

𝛿"#𝐶 = /𝑅$%&'() 𝑅$*%+,%-,
7 3 − 1 ∗ 1000 1 

 

where δ13C is the reported stable carbon isotope output, Rsample is the 13C/12C ratio in the tree-ring 

samples, and Rstandard is the Vienna Pee Dee Belemnite 3C/12C ratio.  δ13C values were then 

converted to carbon isotope discrimination values (Δ13C) according to Farquhar et al. (1982): 

 

Δ"#𝐶 = 𝛿"#𝐶%.- −	
𝛿"#𝐶'(%+*

1; +	𝛿
"#𝐶'(%+*	

1000;  2 

 

In the equation for carbon isotope discrimination, annual values of δ13Cair account for changes in 

atmospheric carbon dioxide due to global fossil fuel emissions over time, called the Suess effect. 

We used annual values of atmospheric 13C from Dombrosky (2020) for the conversion.  
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3.3.6 Analyses 

3.3.6.1 Q1: Flow regulation effects on hydrology  

To quantify changes to streamflow following flow management policies on the Truckee 

River, we performed a regime shift analysis on each functional flow metric from upstream (Vista 

gage) and downstream (Below Derby Dam gage) records from 1918-2019. Each metric’s record 

(102 years total) was inspected along a 60-year sliding window (split into two intervals of 30 

years each), and the window containing the greatest difference in paired interval conditions was 

identified as the record’s regime shift point. Percentage change across the metric record from 

before and after the regime shift was quantified, to compare the relative strength of each metric’s 

shift.  

 

3.3.6.2 Q2: Flow regulation effects on tree growth 

We tested BAI from each tree and Δ13C from select trees for significant changes in 

growth caused by river regulation using Tukey’s honestly significant difference (HSD) statistical 

test. Tukey’s HSD tests for a statistically significant difference in means between two 

populations, and significance was set as a threshold of p<0.05. For each tree, the two comparison 

populations were grouped by separating annual BAI before and after 1973 for sites below Derby 

Dam, and before and after 1982 for upper sites. We required a minimum of 15 years for each 

testing pool to eliminate potential age-related growth effects as well as trends associated with 

short-term climate fluctuations. This limited the analysis to trees with BAI records beginning at 
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or before 1967 or 1958, for upstream or downstream trees respectively. In total, 16 trees from the 

upstream sites and 14 trees from the downstream sites were suitable for the analysis. Trees at site 

US-2 all had records beginning after 1967 and were therefore not included. 

 

3.3.6.3 Bayesian hierarchical model 

To model cottonwood annual BAI based on hydrologic and climatic influences, we 

assumed a normal distribution of growth such that:  

 

𝐵𝐴𝐼.,*,- 	~	𝑁𝑜𝑟𝑚𝑎𝑙G𝜇.,$(*),- , 𝜎I 3 

 

in which growth is indexed based on individual trees (t), which are nested into categories of site 

(s, out of five total sites) and regulation period (r) in a hierarchical framework. Regulation 

periods are defined differently for sites upstream and downstream of Derby Dam, based on 

important policy dates which are confirmed by detectable changes in annual hydrologic metrics. 

For upstream sites, regulation periods are split before and after 1982, and for downstream sites, 

regulation periods are defined before and after 1973. We defined the mean (µ) as a linear mixed-

effects model with varying coefficients (𝛽 terms) and a random effect (𝛼 term): 

 

𝜇.,$(*),- =	𝛼$2*(.)3,-(.) +	𝛽"$2*(.)3,-(.)𝑃. +	𝛽!$2*(.)3,-(.)𝑇.	 +	𝛽#$2*(.)3,-(.)𝑉𝑃𝐷.	

+	𝛽56"7$2*(.)3,-(.)𝑄56"7 
4 
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where T= temperature, P=precipitation, VPD=vapor pressure deficit, and Q5-18 represent the 

suite of functional flow metrics calculated from annual flow hydrographs and described in Figure 

3-3.  

With a large set of input flow variables, it is likely that the statistical significance 

quantified for each variable represents partial influence on growth in cases where correlated 

variables share a path of influence on tree growth. Therefore, a sensitivity analysis was 

performed in which alternate versions of the Bayesian model were run with different 

combinations of variables, to account for potential masking of variables significance by 

removing correlated variables. Alternate model versions were designed to highlight metrics from 

a particular functional flow component, removing the metrics from other components. Two 

additional models were also designed to highlight temperature and vapor pressure deficit 

variables by removing most other variables. Results from the primary model described in 

Equation 1 are presented in the main text, and further description and outputs for the alternate 

models are in the Supplemental Materials.  

The model was implemented as a linear mixed-effects model in a Bayesian framework. 

We specified standard, vague priors with normal distributions centered around either -1, 0, or 1 

based on the direction of influence each variable was expected to have on tree growth. Models 

were implemented in RJAGS, an open-access software package designed for Bayesian data 

analysis in the R statistical programming language (Plummer 2003). JAGS uses Markov chain 

Monte Carlo (MCMC) methods to sample model parameter values from their joint posterior 

distribution. For each model, four parallel MCMC chains were run until chains were well-mixed, 

as determined visually from output traceplots. Models were specified with 5000 adaptive 

iterations and 3000 burn-in iterations (to increase sampling efficiency), a thinning interval of 20 
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(to reduce autocorrelation), and a total sampling number of 1000. We calculated the mean of the 

posterior distribution for each model parameter and the 95% credible interval defined between 

the 2.5th-97.5th percentiles. 

Precipitation, temperature, and VPD were all considered as variables in the Bayesian 

model. Modeled monthly values of precipitation, temperature (both average and maximum) and 

VPD (both average and maximum) were obtained from PRISM (Daly et al. 2008) across a set of 

14 4km grids, averaged to cover a continuous reach of the Lower Truckee River including all 

study sites. Precipitation was considered as both a cumulative annual value over the water year 

and a cumulative value over the growing season months (April-July). All model variables were 

standardized (by subtracting the mean and dividing by the standard deviation) to allow for direct 

comparisons between parameters in the posterior samples. BAI, the outcome variable, was first 

log-transformed and then standardized. 

The Widely Acceptable Information Criterion (WAIC) measures model predictive 

accuracy while accounting for model complexity and was used to score model performance 

(McElreath 2020). A lower WAIC score indicates better predictive accuracy, although values are 

best used as relative comparisons between models of similar structure. WAIC scores for the 

primary model and the alternates are presented in the Supplemental Materials (Table A3-3).  

 

3.3.6.3.1 Q3: Streamflow and climate influence on cottonwood growth 

We determined significance for each model parameter as whether the 95% credible 

interval overlapped with zero, where a credible interval containing zero was deemed not 

significant. To determine the total significance of a given parameter, parameter significance was 

calculated at the tree level and total significance was reported as a percent (out of 82 individual 
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trees). These total parameter significance values are reported separately for tree growth in the 

historic and modern regulation periods, because of differences in parameter values that emerge 

with this distinction. The importance of each streamflow and climate variable was interpreted by 

its relative ranking among the other tested variables. The analysis of streamflow and climate 

influence primarily focuses on model parameters for the modern regulation period, because the 

majority of model parameter values for the historic regulation period ranged from very low 

(<5%) to 0% significance.  

 

3.3.6.3.2 Q4: Effects of regulation period on tree growth influences 

Splitting tree growth analyses by historic and modern regulation periods (before and after 

1973 for DS trees, 1982 for US trees) allowed us to gain insight into the differences these flow 

management periods potentially have on cottonwood growth response to environmental 

conditions. To accomplish this, the total percent significance in parameters for each tree was 

separated by regulation period, and significance results were compared according to the rubric 

described in Table 3-1. To further examine differences in flow regulation period, density plots 

were created for the posterior distribution of certain parameters exhibiting notable difference 

between historic and modern periods.  

 

3.4 Results 

3.4.1 Q1: Flow regulation effects on hydrology 

Distinct differences in streamflow patterns above and below the Derby Dam diversion 

point were apparent through flow daily records. Annual flow patterns varied between historic 
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and modern periods of flow management, and between wet and dry years (Figure 3-5). Wet 

water years experienced less flow abstraction overall, and very little during high flow periods. 

Even in a wet water year such as 1943, however, flows between July-November were nearly 

eliminated below Derby Dam. In dry years diversions become more apparent as a larger fraction 

of annual flow, in both historic and modern management. Modern management practices 

however avoid full dewatering of the lower river, unlike historic practices.  

 

Figure 3-5. Comparisons of streamflow from gages above and below Derby Dam across modern and historic 

management periods, in select wet and dry water years. Differences in flow between the two gages are 

predominantly from diversions at Derby Dam. 
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The regime shift analysis revealed large shifts in dry season magnitude metrics below 

Derby Dam. 1972 and 1974 emerged as regime shift years for 50th and 90th percentile dry 

season flow magnitude. Both metrics more than quadrupled in the later regime, increasing by 

727% and 318% respectively. These results align strongly with the environmental flows 

introduced in 1973. Other large metric changes around this shift period included an increase in 

average annual flow of 77%, a lowering of coefficient of variation (a measurement of stream 

flashiness) by 45%, an increase in wet season magnitude by 31%, and an increase in wet season 

duration of 30% (Figure 3-6).  

Upstream functional flow metrics did not experience changes as large as downstream, but 

several metrics changed by more than 10%, with most regime shifts occurring between 1985-

1989. The spring recession rate of change lowered by 24% with a regime shift in 1961, though 

inspection of the plotted records show that a gradual lowering of the spring recession rate of 

change continued until the mid 1990’s. This aligns with flow policies enacted in the mid-1990’s 

to match spring flow recession with the cottonwood recruitment box model described by Rood et 

al. (2003) (Figure 3-6). Regime shift results for the rest of the functional flow metrics at both 

streamflow gauges are tabulated in the Supplemental Materials (Table A3-1).  
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Figure 3-6. Select streamflow metrics show change through time at flow gages above and below Derby Dam. 

Regime shifts are marked to illustrate where a transition in average flow metric values occurred, and the percent 

shift in metric value is specified for each flow metric. 

 

Water level measurements taken at each field site were plotted against water level change 

at the nearest USGS gage site (for upstream and downstream sites) (SM Fig. A3-1 - A3-6). 

Across the three upstream sites, slopes of water level change varied somewhat, suggesting 

differences in channel geometry at each site affecting variations in water level with streamflow. 

Site US-2 had the steepest slope in water level changes, followed by US-1, then US-3. The site-

specific slopes of water level rise were all less than the gage slopes, such that an increment of 
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change in water level at the gage would be 56-80% less at the field sites. The cottonwood sites 

are generally on open floodplains in wider channels than the constricted channel sites used for 

USGS gages, so the differences in water level slopes are expected. The two downstream sites 

differed from each other much more than the upstream sites. DS-2 has a nearly 1:1 ratio of water 

level change with the nearest USGS gage, while the water level at DS-1 changes at roughly half 

the rate of the USGS gage. This apparent difference in channel geometry may contribute to 

differences in tree growth examined in the following sections.  

Groundwater measurements from the shallow wells were compared to water level from 

the nearest gage, with plots available in the Supplemental Materials (A3-7 – A3-8). Groundwater 

tracked tightly with river surface water levels, revealing matched patterns down to daily 

resolution. Both river level and groundwater responded similarly to hydrologic events such as 

winter rainstorms, spring recession, and diurnal fluctuations from snowmelt in the spring or 

riparian vegetation transpiration in the summer.  

 

3.4.2 Q2: Flow regulation effects on tree health 

3.4.2.1 Tree response through basal area increment 

Although some years show correlated flow patterns between upstream and downstream 

trees, over time the two groups exhibited independent growth patterns (Figure 3-7). Growth 

distinctly rose between 1930 and 1970 at the downstream sites, followed by fairly stable growth 

at a higher level than the first three decades on record. Growth at the upstream sites has 

fluctuated over time, occasionally aligning with rises and drops in growth also experienced at the 

downstream sites. Certain years with notable weather patterns stand out across both groups, such 
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as a drop in growth in the exceptionally dry year of 1977, and a sharp increase in growth in the 

record-breaking wet year of 2017. 

 

Figure 3-7. Annual basal growth across trees upstream and downstream of Derby Dam, revealing an increased 

growth trend in downstream trees from 1950-1970.  

Outcomes from Tukey’s HSD test indicate a clear increase in tree growth at downstream 

sites after 1973, across the 14 trees tested (Figure 3-8). Ten out of 14 trees (71%) exhibited a 

significant increase in growth (p<0.05), and only one tree experienced a significant decrease. The 

average growth increase among these trees was 157%, or a nearly three-fold increase in annual 

growth. Upstream trees were more mixed, with 8 out of 16 trees experiencing significant 

increase in growth after 1982, and two trees significantly declined in growth. Although Δ13C 

measurements available for Tukey’s HSD test were limited, their outcomes align with the BAI 

results. The downstream Δ13C record showed increase over time, indicating increased health, 

while the upstream records revealed both increase and decrease in Δ13C at the two tested sites.  
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Figure 3-8. Significant changes in growth and Δ13C (Tukey HSD, p<0.05) before and after major environmental 

flow policy changes across trees in sites upstream and downstream of Derby Dam. The average percent increase or 

decrease in BAI is noted. 

 

3.4.2.2 Tree response through stable carbon isotope (Δ13
 C) concentrations 

Although Δ13C measurements were performed on a small subset of annual rings, patterns 

of Δ13C concentration revealed responses to streamflow conditions that are less apparent from 

aggregate BAI analysis. Figure 3-9 illustrates growth and carbon isotope concentrations of four 

long-lived trees at site DS-2, which exhibit distinct patterns aligning with the 1973 turning point 
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in flow management. Increases in Δ13C after 1973 were statistically significant, as confirmed in 

the Tukey’s HSD test. From the beginning of the shared record in 1930, Δ13C reveals a gradual 

onset of water stress that began to reverse in the 1970’s. Most years in the modern management 

era show less water stress than the historic era. BAI patterns demonstrate a similar response; very 

low levels of growth occurred before the 1970’s, followed by much higher growth in the modern 

management period after 1973. Although trees respond to very dry years such as 2008, growth 

rebounds afterwards, showing a resiliency to drought conditions. 

 

 

Figure 3-9. Both growth and Δ13C in select trees below Derby Dam exhibit a clear improvement in health around the 

time of flow management shifts in 1973.  

 

At US-3, the tree-rings from two individuals were kept separate for Δ13C measurements 

(instead of pooling samples as done for other sites) so that differences in Δ13C dynamics could be 

compared across individuals of about the same age and size (Figure 3-10). Two broad patterns 

emerge over time, beginning with a period of distinctly lower absolute value Δ13C in the tree 

further from the channel (indicating more water stress), followed by a rise in Δ13C so that the two 

trees are well-correlated for the rest of the measured period. The shift in Δ13C patterns in the tree 
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further from the channel aligns with a court decision to reoperate flows out of Stampede 

Reservoir, which controls flow from a major tributary in the upper watershed, to recreate spring 

snowmelt flows for native fish spawning. Since US-3 is above Derby Dam, the 1973 change in 

flow patterns did not affect trees at that site. It is possible however that the 1982 shift in flow 

regulations at Stampede Reservoir may have contributed to this tree’s reduction in water stress.  

These results also indicate that trees show different levels of stress response to 

fluctuations in water availability. Since the two trees investigated here are subject to the same 

streamflow and climate, other tree-specific factors may be affecting individual water availability 

over time. These factors may include differing groundwater access controlled by rooting depth or 

location on the floodplain, or stress caused by resource availability or predation. In this example, 

the tree further from the floodplain appears more responsive to changes in water availability, 

potentially initiated by a response to changing streamflow patterns.  

 

 

Figure 3-10. Δ13C for two individual trees upstream of Derby Dam illustrates a period of differing water stress 

followed by a reduction in water stress for one of the trees, aligning with the reoperation of an upstream dam to 

provide environmental flows.  
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3.4.2.3 Q3: Streamflow and climate influences on tree growth 

Model performance was first broadly assessed by comparing observed and model-

predicted values of log-transformed BAI (Figure 3-11). Values tended to center around a 1:1 line 

with R2 of 0.88, indicating fairly accurate model prediction. The root mean squared error percent 

(RMSPE) of the model was 20.8%. There was no discernible difference in prediction accuracy 

between BAI values from historic and modern management periods, although modern era BAI 

values were generally higher. Higher growth in the modern management era may be due to a 

combination of higher water availability and higher growth in younger trees. This potential 

juvenile effect was controlled for in modeling by removing the first five years of growth records 

from each tree.  
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Figure 3-11.  Predicted versus observed log-transformed BAI from Bayesian modeling suggests that the model 

performs well, based on the relatively close adherence to a 1:1 line with R2 = 0.88 and RMSPE of 20.8%.  

 

Across the functional flow metrics and climate variables, significance was low overall. 

Metrics with the highest parameter significance in the modern regulation era included spring 

recession rate of change (13%), wet season start timing (12%), wet season magnitude and 

duration (both 9%), and dry season median magnitude (9%) (Figure 3-12). In the historic 

regulation era, the metric with the highest parameter significance was average annual flow with a 

moderate influence at 8%, and all other parameters were at or below 5% significance. Functional 

flows with the lowest levels of significance across either regulation period included peak flows 
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(2%) and the fall pulse (0-2%), suggesting these metrics have low influence on mature 

cottonwood growth. Variables describing climate also had low significance overall (<5%). 

Interestingly, metrics describing spring recession magnitude, timing, or duration had no 

influence on tree growth, although rate of change was the most significant parameter in the 

modern regulatory period.  

Differences in tree growth that were not explained by the streamflow or climate variables 

defined in the models were quantified through random effect coefficients for each tree. Random 

effects were highly significant across models, with tree-level significance occurring in 46% or 

23% of trees in the modern or historic era, respectively (Figure 3-12). Random effects may 

capture effects unique to each tree such as competition, predation, physical damage, and factors 

affecting access to water such as rooting depth or localized floodplain conditions. Attempts to 

discern a correspondence of random effects with distance to the active channel or tree age did not 

produce apparently significant relationships.  
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Figure 3-12. Coefficient significance across all model variables, distinguished by parameters for either historic or 

modern regulation periods. Values are reported as the percent of individual trees with a significant coefficient for the 

given variables. A model hydrograph is overlaid to visualize the functional flow components represented by 

streamflow metrics.  

 

3.4.2.4 Q4: Effects of regulation period on tree growth influences 

Both site and regulation era were structured as hierarchies in the models, so that 

differences in streamflow and climate influence could be examined across these categories. 

Across all sites, parameters were significant 2.6 times more often in the modern regulatory 

period, versus historic conditions. Parameters for the modern regulation era were more than 
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double the significance of the historic period for most variables describing the wet season, spring 

recession, and dry season. However, exceptions to this generality emerge across sites and some 

variables. In the DS sites, dry season median magnitude and precipitation had higher coefficient 

values in the historic regulation period, although parameter significance was higher at US sites in 

the modern period (Error! Reference source not found.). The influence of precipitation on g

rowth also differs when examining annual or growing season precipitation. In both management 

eras, annual precipitation has notably more influence on DS-1 growth than growing season 

precipitation.  

 

 

Figure 3-13. Probability densities of model coefficients for median dry season magnitude, annual precipitation, and 

growing season precipitation at downstream sites, split by flow regulation period, reveal how the importance of 

these coefficients depends on the regulation period.  
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3.5 Discussion 

In this study we assessed the response of mature cottonwood trees to environmental flow 

regulations in an arid climate. Analysis of streamflow and dendrochronological records along the 

Lower Truckee River confirmed our hypothesis that ongoing environmental flows significantly 

shifted certain streamflow metrics, including dry season flow magnitude, aligning with increases 

in annual growth and decreases in water stress. However, the importance of certain flow metrics 

to growth such as wet season metrics did not match our expectations. The close association 

found between river surface level and shallow groundwater suggests that river flows are the 

primary control on cottonwood water availability, and supported our approach of linking 

cottonwood health to streamflow.  

For the past three decades, growth across both the upstream and downstream sites has 

remained fairly stable, with fluctuations that may represent response to water availability and 

other environmental conditions (Figure 3-7). This contrasts with the historic regulation period 

before 1973, when growth at the downstream sites was 157% lower in most trees (Figure 3-8) 

and carbon isotope measurements indicated a sustained increase in water stress at site DS-2 from 

the start of measurements in 1930 until 1970. None of the study sites exhibited sustained trends 

of declining growth or increased water stress in response to recent severe droughts such as the 

2012-2016 drought, suggesting that mature floodplain trees are resilient to these conditions when 

provided sufficient environmental flows. 
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The increase in flow below Derby Dam secured by the Pyramid Lake Paiute Tribe in 1973 

was very likely the major driver of improvements in tree growth and health witnessed in the 

following decades. Our findings build directly on those of Rood et al. (2003), who found that 

environmental flows set in the 1970’s and 1980’s improved conditions for recruitment of new 

cottonwoods. We extend this conclusion with evidence that environmental flows also improved 

growing conditions for mature cottonwoods downstream of Derby Dam, some of which were 

declining in health up until the 1970’s. Effects on upstream trees are less conclusive, but carbon 

isotope measurements suggest that some trees may have benefitted from increases in water 

availability possibly driven by environmental flows established in the upper watershed in 1982.   

Functional flow analysis of flow records confirmed large changes in some flow metrics 

following establishment of environmental flow regulations, especially increases in dry season 

magnitude downstream of Derby Dam. Cottonwoods require access to water year-round and the 

relationship of cottonwood growth to groundwater access during dry periods is well-established 

(Foster, Mahoney, and Rood 2018a; Schook et al. 2022; Stromberg and Patten 1990). Other flow 

metric changes such as increases in average annual flow and wet season duration were likely also 

beneficial to cottonwoods, indicated by their moderate to high significance on cottonwood 

growth in the Bayesian model.  

Spring recession rate of change declined significantly over the past several decades to 

become more gradual, aligning with strategies implemented by agencies operating dams and 

diversions along the river to provide suitable conditions for cottonwood seedling recruitment 

(Rood et al. 2003). Gradual spring recession rates have demonstrated importance for many other 

species aside from cottonwoods seedlings, such as macroinvertebrates (Paetzold, Yoshimura, and 

Tockner 2008; Steel et al. 2018) and amphibians (Yarnell, Viers, and Mount 2010). The high 
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influence of spring recession rate of change on mature cottonwood growth in the Bayesian 

models was unexpected, since the importance of this flow component has usually been 

associated with cottonwood seedling root growth in the shallow capillary fringe (Foster, 

Mahoney, and Rood 2018a; Amlin and Rood 2002; Willms, Pearce, and Rood 2006). Mature 

cottonwoods have been found to access shallow soil water however, especially where 

groundwater is deep, so it is possible that trees on the Lower Truckee River strategically source 

from shallow soil water when river flows are high (Williams and Cooper 2005; Snyder and 

Williams 2000). 

Modeling results for the modern regulatory period indicate moderate to high significance 

of wet season metrics (magnitude, timing, and duration) on tree growth. The relatively high rate 

of significance across these metrics compared to other functional flows was not expected, 

especially in comparison to spring recession flows, which occur during annual tree growth. It is 

possible that aspects of the wet season create favorable growing conditions for cottonwoods that 

persist beyond the wet season. For example, high correspondence has been found between wet 

season streamflow and soil moisture, potentially promoting groundwater flow on hillslopes 

(McNamara et al. 2005, Moore et al. 2011). When winter precipitation and streamflow are not 

sufficiently high, dry soil regions can prevent this lateral flow (McNamara et al. 2005). It is 

possible that more sustained wet season conditions at the study sites, indicated by longer and 

higher magnitude wet seasons, promote hydraulic connection of the stream and floodplain that 

benefit cottonwood growth during the subsequent growing season.  

Dry season flow magnitude had a moderate influence on cottonwood growth, occurring 

primarily during the modern regulatory period. However, at DS sites most of this influence 

occurs during the historic management era, when dry season flow magnitudes were severely 
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limited. Shallow groundwater tables may have dropped below the cottonwood rooting zone for 

prolonged times during this period, creating the observed growth response. A drop in 

groundwater levels below the rooting zone has been found in other dewatered streams in arid 

environments, leading to reduced tree growth (Foster, Mahoney, and Rood 2018a; Schook et al. 

2022). When dry season flows were significantly increased in 1973 it is possible that mature 

cottonwood roots regained perennial connection with the groundwater table, leading to the 

weakened correspondence with dry season flow magnitude. Rood et al. (2013) similarly found 

that cottonwoods only responded to streamflow fluctuations in years when water was limited.  

Changes in streamflow caused by changes in river regulation in the 1970’s and 1980’s 

have clearly contributed to improvements in growth and health in mature cottonwoods based on 

significant increases in growth and decreases in stress confirmed by Tukey’s test. However, 

modeling points to other environmental factors influencing tree health. Annual precipitation is 

somewhat significant to tree growth, and the modeling sensitivity analysis suggests that its 

influence is through paths outside of its direct effect on annual streamflow. The importance of 

precipitation on cottonwoods is notable given the extremely arid conditions on the Lower 

Truckee River (about 200mm annually), and suggests that trees may uptake shallow soil water 

occurring from this low level of precipitation. This aligns with other studies finding an 

importance in summertime precipitation (Cooper et al. 1999) or shallow soil water for 

cottonwood water use during dry periods. Cottonwood tree rooting systems include a collar of 

shallow roots adapted for uptaking shallow soil water originating from precipitation or overbank 

flows, which provide a different pathway for water availability besides groundwater supported 

by river flows (Hultine, Bush, and Ehleringer 2010; Phelan, Pearce, and Rood 2022; Williams 

and Cooper 2005).  
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Although some consensus exists, trees within a site did not all respond similarly to 

streamflow and climate influences. Water demand of individual trees may vary due to factors 

affecting evaporative demand such as light exposure, or stress-inducing factors such as 

competition or predation (Rood et al. 2013). Groundwater dynamics on the floodplain likely 

have an important influence on individual tree growth, and the dynamics of this relationship at 

each site may depend on more complex factors than distance to the channel. Factors affecting 

tree groundwater availability may include substrate composition, topography of the channel and 

floodplain, and vegetation composition (Stella et al. 2013). The texture of sediments can 

influence tree water availability, as fine-textured sediments are more capable of storing plant-

available water than sands (Cooper et al. 1999). The differences in stage-discharge relationships 

at each site may also indicate unique shallow groundwater dynamics that affect tree response to 

water availability at each site. Groundwater dynamics were not the primary focus of this study 

and measurement was therefore limited, but further study is an important path for future 

research. Although there was no clear signal of tree stress at the outer margins of the floodplains, 

the outer edges of riparian forests in arid environments can be especially vulnerable to water 

limitation, which in severe cases can lead to riparian corridor narrowing (Rood et al. 2013). An 

important avenue for further research could also include measurement of water table levels at the 

floodplain margins.  

Although the low significance of functional flow and climate variables suggests 

importance of other factors influencing growth, it may also indicate limitations in the model 

structure. An ensemble of variable combinations were tested in different models, but variable 

significance did not greatly improve across any of these model alternatives. Introducing a lag 

effect into the model could reveal increased variable significance if water availability has a 
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multi-year effect on growth (Rood et al. 2013). However, Pearson correlations of model 

variables on growth for current-year and one-year lags produced weaker correlations for lagged 

variables than current-year variables, and justified our decision to prioritize regulation period as 

a primary focus in the hierarchical model. Next steps in future research could include exploring 

the effects of lagging flow and climate variables in growth models, as well as considering 

biological growth effects that may strongly influence individual trees.  

Δ13C revealed significant increase in DS tree health after 1973, which further supports the 

improvement in DS tree health after 1973 indicated by increased growth. However, Δ13C did not 

produce a more immediate response to increased flows than growth, as other researchers have 

witnessed (Schook et al. 2016). It is possible that trees on the Lower Truckee River floodplain 

have a more stable floodplain water table than the smaller system studied in Schook et al. (2020), 

and changes in Δ13C would not appear as abruptly. The individuals measured for Δ13C at site US-

3 gave an indication that variations in tree physiology or groundwater dynamics within the 

floodplain may play an important role in tree water availability and stress, based on the relative 

complacency of Δ13C in the individual closest to the active channel (Figure 3-10). Other studies 

have found an influence of hydrogeomorphic heterogeneity on cottonwood water availability 

(Schook et al. 2016; Stella et al. 2013; Willms, Pearce, and Rood 2006). No clear patterns 

emerged when comparing the growth sensitivity of all trees and their floodplain locations. It is 

possible that Δ13C could reveal a trend in water sensitivity based on location not apparent from 

growth alone, but the cost of Δ13C measurements limited its application in this study.  

The environmental flows established on the Truckee River have been considered a success, 

based on recoveries of several native riparian and aquatic species (Rood et al. 2003). 

Environmental flows have been implemented in other arid watersheds of the western U.S. to 
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restore riparian vegetation, with mixed success (Glen et al. 2017, Williams and Cooper 2005). 

On the Colorado River, the experimental “Minute 319 Pulse Flow” negotiated in 2014 had less 

success than expected in its goal of recruiting new cottonwood and willow seedlings, with most 

of the satellite-measured revegetation diminishing a year after the pulse flow event (Glen et al. 

2017). In Alberta, Canada, an environmental flow strategy similar to that on the Truckee River 

reported more success for cottonwood establishment and growth (Foster et al. 2018). Minimum 

flows were raised during summer dry conditions, paired with gradual ramping of spring 

recession flows. Mature cottonwood growth rose following the establishment of environmental 

flows, which was considered a likely response to the increase in minimum flows (Foster et al. 

2018). In these examples, a permanent environmental flows program providing sufficient 

instream flows during dry periods has benefitted mature cottonwoods, versus experimental flood 

pulses negotiated on an individual basis. The permanence of environmental flows on the Truckee 

River has likely contributed to the river’s ecological improvement, which has benefitted fish and 

riparian birds along with riparian vegetation (Rood et al. 2003).    

Our study provides strong evidence that degraded riparian corridors can respond positively 

to environmental management programs that balance ecosystem needs with human needs.  

Mature cottonwood trees are important to preserve because of their cultural and ecological value, 

provision as both habitat and food source to riparian and riverine communities (Sabo et al. 2008), 

and as the source of seed for future cottonwood regeneration. In regions where cottonwood 

riparian forests have been depleted, manual replanting requires a substantial effort with many 

seedling mortality risks (Rood et al. 2016). Preserving existing cottonwood forests is therefore a 

more effective strategy for preserving riparian and riverine ecosystems. Differences in growth 

and Δ13C patterns across and within sites, along with high model significance in random effects 
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suggests that factors affecting individual tree health play an important role in determining 

cottonwood growth. Site-specific considerations including channel form and individual tree 

physiology are important in determining response to changes in flow patterns, along with the 

proven effectiveness of environmental flow implementation.  
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Concluding Remarks 

The goal of this dissertation was to quantify and understand hydrologic alteration of 

rivers and its ecologic effects by characterizing streamflow, using a functional flows approach. 

Across three chapters of research and five years of effort, tools were developed, tested, and 

applied to achieve this goal. This work validated functional flows as an effective strategy for 

ecological streamflow analysis with evidence that they can be used to differentiate California’s 

natural flow regimes, quantify streamflow response to climate change, and reveal the links 
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between flow management and riparian forest health. Across this dissertation, the importance of 

seasonal streamflow timing was uniquely recognized for its role in governing life history patterns 

in aquatic ecosystems. The explicit quantification of functional flow timing achieved with the 

Seasonal Flows Detection Algorithm (SFDA) allowed for direct assessments of timing 

alterations in ecologically-relevant flows, which were explored in the subsequent studies. 

Chapter 1 details the development of a tool called the Seasonal Flows Detection 

Algorithm (SFDA), which identifies and quantifies functional flow metrics from daily 

streamflow time series for flow patterns typical of Mediterranean climates such as California. 

Although not perfect, the SFDA achieved 90% accuracy in its identification of functional flow 

components across variable streams and water year types. Through this project, the importance 

of timing of seasonal flows became apparent. The timing of predictable wet and dry periods in a 

stream guide life cycle events of aquatic and riparian species such as spawning, seed release, and 

migration (Gasith and Reth 1999; Lytle and Poff 2004). Proper timing of flow seasons maintain 

the temperature, nutrient, and biological cycles that freshwater species are adapted to (Yarnell et 

al. 2015). It became evident through this project that accurately identifying the timing of these 

seasonal flow transitions is much more challenging than conventional methods of streamflow 

analysis such as calculating monthly flow averages or annual percentiles of magnitude. To meet 

this challenge, a signal processing method was developed incorporating iterative signal 

smoothing, windowing, and feature detection, techniques less commonly applied in hydrologic 

science. The resulting SFDA tool is flexible yet robust, and was used to successfully differentiate 

natural streamflow classes in California according to their functional flow metrics. Building on 

this work, Grantham et al. (2022) leveraged functional flow metrics calculated with the SFDA at 

reference reaches in California to model functional flow ranges for all ungaged stream reaches 
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across the state. Chapters 2 and 3 of this dissertation featured applications of the SFDA to 

characterize streamflow and quantify alterations through the lens of functional flows.  

In Chapter 2, expected changes to ecologically relevant streamflow due to climate change 

were quantified for western drainages of the Sierra Nevada mountains, California. This research 

combined two different techniques for hydrologic climate change analysis, using streamflow 

routed with climate forcings from 1) a suite of Global Climate Models, and 2) a set of scaled 

perturbations of temperature, precipitation volume, and precipitation variability (i.e., decision 

scaling). Perturbations of three different components of precipitation variability allowed a 

thorough investigation into how expected increases in climate volatility may affect functional 

flows. The greatest changes in ecologically-relevant streamflow patterns manifest as longer and 

drier dry season conditions, earlier snowmelt recession, and higher-magnitude peak flows. Of 

climate parameters explored, air temperature causes the most change in functional flows, 

although precipitation variability, especially interannual variability, compounds changes driven 

by air temperature. Notably, the severity of future streamflow change depends heavily on the 

projected level of human emissions. This research explicitly links climate change to potential 

aquatic ecosystem risk, and adds to the body of knowledge justifying urgent action to address 

climate change.  

In Chapter 3, dendrochronology was paired with seasonal flow analysis to infer how 

mature cottonwood trees along the Lower Truckee River, Nevada, respond to climate and water 

management influences. The Truckee River has a legacy of heavy management including both 

decades of intensive streamflow diversions and subsequent environmental flows. Cottonwoods 

clearly responded to environmental flows first established in the 1970’s, with both increased 

growth and decreased water stress. Of the functional flow metrics tested, dry season flow 
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magnitude was the most altered and subsequently restored with environmental flows, and was 

moderately linked to cottonwood growth. However, the influence of dry season flow magnitude 

on cottonwood growth was only present before the onset of environmental flows in trees 

downstream of flow diversions, suggesting that stable connection of cottonwood roots with the 

alluvial water table may have been restored with environmental flows. Precipitation also had 

some influence on cottonwood growth, especially outside of periods of high river flow, which 

may indicate a preferential use of shallow soil water recharged by precipitation during low flow 

periods. A surprising connection between spring recession rate of change and mature cottonwood 

growth was also found, although this flow metric is more commonly associated with 

establishment of cottonwood seedlings. Functional flow metric analysis allowed for a detailed 

investigation into streamflow conditions affecting cottonwood growth, and suggested a higher 

association of growth with metrics in the wet season, spring recession, and dry season functional 

flow components, which changed over time along with river management periods. This research 

offers promising evidence that environmental flows can lead to measurable improvement in 

riparian forest productivity, and showcases this study site as a model for river restoration in other 

arid watersheds.  

Twenty years ago, Postel and Richter (2003) urged that “the time is ripe for a global river 

restoration movement.” This message still resounds today, and the need is greater than ever to 

preserve and restore river ecosystems. This dissertation advances river science and management 

using functional flows theory to effectively characterize streamflow patterns with established 

links to ecological functioning. This theory was tested in the field in a watershed-scale study of 

streamflow-ecosystem interactions, revealing the ecological effects of an environmental flows 

program. Functional flows were also applied to determine how ecologically-relevant flows may 
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shift in a warming climate. The challenges ahead for river management may be great, but with 

ecologically-founded river science and an openness to truly balance ecosystem needs with 

human needs, there is certainly hope for a global movement towards river restoration.  
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Software Availability 

Name: Functional Flows Calculator    

Developers: Yexuan Qiu (primary) and Noelle Patterson 

Available from: https://github.com/leogoesger/func-flow   

Programming language: Python 3.6 

Interactive website and documentation: https://eflows.ucdavis.edu/    

Contact: https://github.com/leogoesger/func-flow/issues 

Software requirements: Python3 and compatible text editor              

First year available: 2017 

Cost: Free   

 

 

1. Functional Flow Calculations 

 

Four distinct applications of the Seasonal Flows Detection Algorithm (SFDA) are used to 

calculate the start timing of functional flows in California: (1) fall pulse flow timing, (2) wet 

season start timing, (3) spring recession start timing, and (4) dry season start timing (Figure A1-

1). The general steps for SFDA calculation are also included for reference in Figure A1-2.  
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Figure A1-1. Identification of the start timing of four functional flows identified for California (Yarnell et al. 2015) 
using the proposed signal processing algorithm. The timing of flow transitions identified by the algorithm are 
marked with arrows. Hydrographs indicate the 10th, 25th, 50th, 75th, and 90th percentiles of flow in a mixed rain-snow 
river system (modified from Yarnell et al. in review). A water year in California is defined as October 1 to 
September 30.  
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Figure A2-2. Six general steps of the SFDA. (a) Step 1: observed data is smoothed with a Gaussian filter (G1). (b) 
Step 2: a hydrologic feature of interest is detected from G1. Step 3: a search window is set around the hydrologic 
feature. (c) Step 4: a second, lower standard deviation Gaussian filter (G2) is applied to observed data to detect finer 
resolution peaks. (d) Step 5: the slope of the smoothed data G2 is detected using the derivative of a spline curve 
(S1’). Step 6: peak features of interest are identified based on magnitude or slope characteristics.   
 

2.1 Fall Pulse Flow Timing 

The fall pulse flow is the first significant flow event of the water year, signaling the 

transition from the dry season to the wet season, and its calculation requires one iteration of the 

SFDA steps (Figure A1-3). Within each water year, a low standard deviation Gaussian filter (G1, 

σ=0.2) is applied to daily streamflow time series in the windowed range from the start of the 

water year to the start of the wet season, which is calculated previously. The derivative of a 

spline function is used to identify all local peaks in the windowed period based on a sign change 
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in the derivative from positive to negative (triangles, Figure A1-3). Searching forward through 

time from the start of the water year, the first local peak meeting the following requirements is 

selected as the fall pulse flow: (1) magnitude exceeds 200% of previous dry season median 

baseflow magnitude; (2) duration of the peak’s rising limb is less than 20 days; and (3) 

maximum peak magnitude is at least 30% higher than the valleys on either side of the peak. This 

event does not occur in all water years in California, particularly dry water years with limited 

fall-season rainfall. 

There are two exceptions to the relative magnitude requirement described above. First, if 

the previous dry season median magnitude was relatively high (above 0.7 cms), the relative 

magnitude threshold was set as 150% of the previous dry season baseflow instead of 200%; this 

prevented the magnitude threshold from being set too high. Second, 0.08 cms is set as the 

minimum allowable magnitude threshold based on expert judgment that lower flows would not 

be ecologically significant across most gaged streams in California.  
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Figure A1-3. SFDA steps to calculate the fall pulse flow timing metric. Step 1: observed data is smoothed from the 
start of the water year until the identified start of the wet season with a low standard deviation Gaussian filter (G1). 
Step 2: peaks of interest are identified using the derivative of a spine function. Step 3: the fall pulse flow is 
identified based on magnitude and rate of change requirements. 
 

2.2 Wet Season Start Timing  

Wet season start timing delineates the peak magnitude portion of the water year during 

which streams receive the greatest inputs from storm runoff or snowmelt. This calculation uses 

one iteration of the SFDA steps (Figure A1-4), similar to the calculation of dry season start 

timing. Within each water year, a high standard deviation Gaussian filter (G1, σ=10) is applied to 

detect the water year’s global peak (P1) and preceding global valley (V1). A relative magnitude 

threshold M1 is then set based on the magnitude of P1 and V1 as an upper limit (M1=𝛾*(P1-V1), 

where 𝛾=0.2), to ensure that wet season start timing is not set after flows have already increased 

during the water year. A spline curve is then fit to G1 so that its derivative can be used as a 

hydrologic requirement in the final feature detection step. Finally, searching backwards in time 
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from P1, the date that discharge first falls below M1 and below a rate of change equaling (𝛿*P1, 

where 𝛿=0.002) is selected as the wet season start timing. Similarly, the values for 𝛾 and 𝛿 were 

defined based on expert opinion of the co-authors to achieve functional flow identification as 

illustrated conceptually in Figure 1. 

 

Figure A1-4. SFDA steps to calculate the wet season start timing metric. Step 1: observed data is smoothed with a 
Gaussian filter (G1). Step 2: the global peak and previous global valley are identified from G1. Step 3: the 
magnitude threshold M1 is set based on the relative difference of P1 and V1. Step 4: wet season start timing is set 
based on magnitude and rate of change requirements. 
 

2.3 Spring Recession Start Timing 

The spring recession represents the seasonal transition from wet season high flows to 

persistent and low-variability dry season flows. To apply the SFDA to this flow component, two 

iterations of the SFDA are performed, beginning with the general SDFA steps described in 
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Figure A1-2. Within each water year, a high standard deviation Gaussian filter (G1, σ=10) is 

applied to the raw daily streamflow time series to detect major wet and dry seasons (Figure A1-

2a, step 1). The peak flow of the wet season is then identified from G1 to determine the 

subsequent high to low flow transition (Figure A1- 2b, step 2). A 70-day search window (20 days 

before and 50 days after) is applied around the peak flow date to constrain further analysis 

(Figure A1- 2b, step 3). Within the search window, a second low standard deviation Gaussian 

filter (G2, σ=1.3, Figure A1- 2c, step 4) is applied to the raw time series and the derivative of a 

spline function (S1’) is used to detect individual storm events within the windowed range based 

on the occurrence of sign reversals in S1’ from positive to negative (Figure A1- 2d, step 5). The 

algorithm then searches through the identified peaks moving backward in time (arrows, Figure 

A1- 1d) until it detects a peak feature exceeding a magnitude threshold of 50% of the smoothed 

maximum flow, and a rate of change threshold based on a percentage (0.02-0.08%) of the water 

year’s maximum slope. These hydrologic requirements are intended to distinguish the last major 

storm event of the wet season (red arrow, Figure A1- 2d), when the hydrograph transitions from 

wet season flow to a gradual baseflow recession that occurs as the catchment drains.  

Once the last storm event feature is identified, a second, partial iteration of the SFDA is 

applied to a relatively narrow time window to more precisely identify spring recession start 

timing (Figure A1- 5). A narrow search window of four days before to seven days after (black 

dotted lines, step 6, Figure A1- 5) is set around the final identified peak from the first iteration of 

calculation steps (black dashed line, Figure A1- 5), and the peak flow value within this window 

is identified from the raw daily streamflow time series (black dashed line, step 7, Figure A1-5). 

Finally, the spring recession start timing is set as four days following this peak flow value (red 

line, step 8, Figure A1- 5) to limit the effects of individual storm events on the spring recession 
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timing and subsequent flow metric calculations. The parameter values used in this algorithm 

were selected based on expert opinion of the co-authors to achieve functional flow identification 

as illustrated conceptually in Figure A1-1. 

  

 

Figure A1-5. Second iteration of SFDA steps used for calculating spring recession start timing. Previous steps for 
the spring recession calculation are described by Fig. 2. Step 7: A small timing window is set around the final 
identified peak. Step 8: The max flow within the small timing window is identified. Step 9: The final spring 
recession timing is set four days after the max flow from step 8.  
 

2.4 Dry Season Baseflow Start Timing 

Dry season baseflow refers to the low magnitude, low variability portion of the water 

year in California’s seasonally dry Mediterranean climate. This calculation requires only one 

iteration of SFDA steps (Figure A1-6). Within each water year, a high standard deviation 

Gaussian filter (G1, σ=7) is applied to detect the water year’s global peak (P1) and subsequent 

global valley (V1). A relative magnitude upper threshold M1 is then set based on the magnitude 
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of P1 and V1 (M1=𝛼*(P1-V1), where 𝛼=0.125), to ensure that the magnitude at the dry season 

start is sufficiently below seasonal peak flows. A spline curve is then fit to G1 so that its 

derivative can be used as a hydrologic requirement in the final feature detection step. Finally, G1 

is searched moving forward in time to identify the first date that flow falls below magnitude M1 

and below a rate of change threshold equaling (𝛽*P1, where 𝛽=0.001). The values for 𝛼 and 𝛽 

were defined based on expert opinion of the co-authors to achieve functional flow identification 

as illustrated conceptually in Figure A1-1. 

 

Figure A1-6. SFDA steps to calculate dry season start timing. Step 1: observed data is smoothed with a Gaussian 
filter (G1). Step 2: the global peak and subsequent global valley are identified from G1. Step 3: the magnitude 
threshold M1 is set based on the relative difference between P1 and V1. Step 4: dry season start timing (red line) is 
set based on magnitude and rate of change requirements. 
 
 

2. Seasonal Flow Detection Algorithm Development 
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3.1 Data Smoothing  

Data smoothing is a type of filtering in which low-frequency components are retained 

while high-frequency components are attenuated, enabling detection of features of interest at 

different frequencies or time-scales (Press and Teukolsky 1990). In the case of daily streamflow 

data, low-frequency components can include seasonal to annual fluctuations or secular (non-

cyclical) interannual trends, while high-frequency components include daily to sub-seasonal 

fluctuations. Common finite-difference smoothing techniques include simple running averages, 

weighted moving averages, and exponential filters (Janert 2010). The simple running average 

(Eq. A1-1) calculates the average value within a set window k of data points and attributes that 

average to the centermost value within the window. 

 

𝑆. =
1

2𝑘	 + 	1 T 𝑥.89

:

9;6:

 

[A1-1] 

where {xi} are the data points, k is the time window, and the smoothed value at position i is si.  

While the running average is the simplest presented method to calculate, it can cause 

distortion of the filtered time series whenever spikes in the raw data are encountered (Press and 

Teukolsky 1990, Janert 2010). The weighted moving average method (Eq. A1-2) seeks to 

address this issue by placing less weight on values at the ends of the smoothing window and 

more weight towards the center, smoothing abrupt distortions and better retaining local maxima 

in the output function. 
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𝑆. = T 𝑤9𝑥.89

:

9;6:

 

       [A1-2] 

where wj are weighting factors, and all weighting factors equal to 1.  

 

3.2. Valley location adjustment 

A limitation of the proposed feature detection algorithm is that features of interest occurring 

between a local valley and a peak, such as the precise start of a stormflow event, may not be 

readily detected under low flow conditions with consecutive observations of the same discharge 

value, due to the effect of smoothing filters. In this case, a valley location adjustment was 

applied to identify a more hydrologically relevant valley location for flow metric calculations. 

Consider the daily streamflow time series from x=1 to 10 in Figure A1-7. Basic valley detection 

on G1 would identify the local valley location as the middle of the trough (V1/2) between the 

two peaks, P1 and P2 (yellow dots, Figure A1- 7). However, a hydrologic valley may be better 

described as the last baseflow observation before a storm event than as the observation exactly 

between two storms. A sensitivity factor Z is applied to identify a superior valley location (V2’) 

between V1/2 and the local peak (P2) based on the relative magnitude of daily streamflow 

observations at these two locations (red dots, Figure A1- 7). Z is calculated by solving for Z in 

the following equation X=(V1/2 - P2)*Z such that the first value in the G1 series with a 

magnitude greater or equal to X (searching from the initial valley V1/2) is set as the adjusted 

valley location (red triangle, Figure A1- 7). In certain cases, a slope requirement is applied in 

conjunction with the relative magnitude requirement to more accurately identify valley location. 
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This method was used in the SDFA application to California functional flows to determine the 

duration of the fall pulse flow.  

 

 

Figure A1-7. Illustration of the valley location adjustment algorithm for theoretical streamflow data.  
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1. Figures for GCM-based streamflow at RCP4.5 emissions levels.   

 

 

 

Figure A2-1. Historic (1950-2015) and future (2035-2100) simulated daily streamflow for three sites in California, 
aggregated over ten RCP4.5 GCMs (RCP8.5 in main text). Shifts in calculated functional flow metrics for the 
historic and future time periods are marked with arrows.  
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Fig A2-2. Timing shifts in dry season and spring recession functional flow metrics across all study catchments at the 
RCP4.5 emissions level scenario illustrate the variability of shifts across the Sierra Nevada study region. All sites 
exhibit a shift towards earlier timing to varying amounts. 
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Figure A2-3. Results for RCP 4.5 trends in functional flow metrics, showing the number of models experiencing 
significant change (out of 10 total), averaged across the 18 total sites, where the direction of the bar indicates 
positive or negative change. Stars above the bars indicate model agreement according to the Gini index, where index 
values of 0-25% get one star, 25-50% get two stars, and 50-100% get three stars.   
 
 

2. Calculation of Gini Index for measurement of agreement 

 

The Gini index is a common measurement of purity or homogeneity, and was used in this 

study to test for agreement in functional flow metric trends across the 18 sites in the study area 

and the 10 models employed at each site (10 models each for RCP4.5 and RCP8.5 emissions 

scenarios). For each functional flow metric at a given site and given model, its trend was 

calculated across the 150-year period of record and recorded as either: 1) increasing, 2) 
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decreasing, or 3) no-change. The Gini index was used to determine the level of agreement in 

trend outcome across the ten models at each site, according to the Gini purity formula: 

 

𝐺 = 1 −	&(𝑃!)"
#

!$%

 (1) 

 

Where Gini Index G is calculated based on a deduction of the sum of the square of each 

category’s probability of occurrence, Pi, from one. Pi is calculated for each of the three trend 

outcomes (increasing, decreasing, or no-change) as the number of occurrences out of ten, the 

total number of models. In a case such as this with three categories, the maximum value of G is 

one, indicating maximum purity. Maximum impurity, when values are spread equally across all 

three categories, is 2/3. To translate this Gini Index into a percentage ranging from 0-100%, the 

following equation is used for Gini purity with three categories: 

 

𝐺𝑖𝑛𝑖	𝑃𝑒𝑟𝑐𝑒𝑛𝑡 = 100 -1 − 𝐺 /
3
223 

 

(2) 

When translated to the Gini percent, a score of 100 indicates that all outcomes are in a single 

category and agreement is at 100%, such as if trend outcomes at a site were increasing across all 

ten models. A Gini percent closer to 0 would indicate trend outcomes were more evenly split 

between increasing, decreasing, and no-change outcomes. In Figure A2-2 of the SM, or Figure 2-

5 of the main text, the stars over the trend outcome bars indicate ranges of the Gini percent score, 

where 0-25% is given one star, 25-50% is two stars, and 50-100% is three stars. In the outcomes 
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of this study, the Gini score never reached 100% for any single site, and three stars were 

infrequently reached. The ranges to use for the stars were therefore based on the relative 

instances of agreement instead of three equal splits between 0-100%.  

 

3. Decision scaling climate modeling on the Merced River 

 

The 42 scenarios used for the Merced River decision scaling analysis consist of combinations 

of climate parameters that are shifted according to the strategy described in Table A2-1. The five 

parameters and their notations in Table A2-1 are: temperature (DT), precipitation volume (DP), 

precipitation event intensity (DI-E), seasonal precipitation variability (DI-S), and interannual 

precipitation variability (DI-I). The ranges listed out for each parameter represent that 

parameter’s full range: for temperature (DT), 1-5 describes Celsius degrees, for precipitation 

volume (DP), -30-30 represents percentages of shift in volume from a 30% decrease to a 30% 

increase, and for precipitation intensity (DI), 1-5 represents scaled values of precipitation 

variability where 1 is the low end of the range and 5 is the highest. The exact values for DI 

parameters are listed in Table 0.  Scenarios are grouped into three broad categories in the Name 

column of Table 1: OAT (one-at-a-time), Extremes, and Mid-range. OAT scenarios feature 

climate parameters which are shifted one at a time in increments across their full range. The 

three climate parameters describing attributes of precipitation variability (DI-S, DI-E, DI-I) are 

shifted individually in the OAT scenarios but are shifted together in the mid-range and extreme 

scenarios. There are ten extreme scenarios, which shift either one, two, or all climate parameters 

together to the end of their range. For temperature and precipitation variability metrics there is 

only one extreme end of the range (hottest or most variable, respectively), but precipitation 
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volume is shifted to both ends of its range (driest and wettest) in the extreme scenarios. There are 

8 mid-range scenarios, in which each climate parameter is increased by either 1/3 or 2/3 of its 

full range. Three models overlap between the OAT and extreme scenarios, but they are listed out 

redundantly in Table 1 in order to fully describe each scenario group (numbering is until 45 in 

Table 1 but with overlap there are just 42 models total). Baseline climate data for the Merced 

River Basin consisting of daily air temperature and precipitation was generated by Livneh et al. 

(2013) by detrending historic data from 1950-2013. This data represents historic climate 

conditions and was perturbed with the decision scaling framework to develop subsequent climate 

scenarios. 

The ecological exceedance analysis was then performed to determine the frequency that 

decision scaling climate scenarios exceeded historic ranges of functional flow metrics, i.e. the 

relative frequency, in percentage, that a given scenario exceeded historic metric ranges. “Eco-

exceedance” was calculated for each functional flow metric as the percentage years (out of 64 

annual values) that the metric exceeded the (a) full range and (b) 10th to 90th percentile range of 

values in the control scenario. Eco-exceedance values are summarized across all scenarios and 

group by functional flow components in Table A2-5. Table A2-6 reports actual functional flow 

metric values for each scenario, averaged across the period of record.  

 

 

Table A2-1. List of scenarios for decision scaling on the Merced River, which include One-at-a-time (OAT), Mid-
range, and Extreme scenario categories.  

Name DT (1-5) DP (-30- 30) DI-S (1-5) DI-E 
(1-5) 

DI-I 
(1-5) 

Label 

1. Control  0 0 0 0 0 T0P0S0E0I0 
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2. DT-OAT 1 0 0 0 0 T1P0S0E0I0 

3. DT-OAT 2 0 0 0 0 T2P0S0E0I0 

4. DT-OAT 3 0 0 0 0 T3P0S0E0I0 

5. DT-OAT 4 0 0 0 0 T4P0S0E0I0 

6. DT-OAT 5 0 0 0 0 T5P0S0E0I0 

7. DP-OAT 0 -30 0 0 0 T0P-30S0E0I0 

8. DP-OAT 0 -20 0 0 0 T0P-20S0E0I0 

9. DP-OAT 0 -10 0 0 0 T0P-10S0E0I0 

10. DP-OAT 0 10 0 0 0 T0P10S0E0I0 

11. DP-OAT 0 20 0 0 0 T0P20S0E0I0 

12. DP-OAT 0 30 0 0 0 T0P30S0E0I0 

13. DI-S-OAT 0 0 1 0 0 T0P0S1E0I0 

14. DI-S-OAT 0 0 2 0 0 T0P0S2E0I0 

15. DI-S-OAT 0 0 3 0 0 T0P0S3E0I0 

16. DI-S-OAT 0 0 4 0 0 T0P0S4E0I0 

17. DI-S-OAT 0 0 5 0 0 T0P0S5E0I0 

18. DI-E-OAT 0 0 0 1 0 T0P0S0E1I0 
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19. DI-E-OAT 0 0 0 2 0 T0P0S0E2I0 

20. DI-E-OAT 0 0 0 3 0 T0P0S0E3I0 

21. DI-E-OAT 0 0 0 4 0 T0P0S0E4I0 

22. DI-E-OAT 0 0 0 5 0 T0P0S0E5I0 

23. DI-I-OAT 0 0 0 0 1 T0P0S0E0I1 

24. DI-I-OAT 0 0 0 0 2 T0P0S0E0I2 

25. DI-I-OAT 0 0 0 0 3 T0P0S0E0I3 

26. DI-I-OAT 0 0 0 0 4 T0P0S0E0I4 

27. DI-I-OAT 0 0 0 0 5 T0P0S0E0I5 

28. Extremes - T 5 0 0 0 0 In OAT 

29. Extremes - P dry 0 -30 0 0 0 In OAT 

30. Extremes - P wet 0 30 0 0 0 In OAT 

31. Extremes - I 0 0 5 5 5 T0P0S5E5I5 

32. Extremes - TP 5 -30 0 0 0 T5P-30S0E0I0 

33. Extremes - TI 5 0 5 5 5 T5P0S5E5I5 

34. Extremes - PI 0 30 5 5 5 T0P30S5E5I5 

35. Extremes - PI 0 -30 5 5 5 T0P-30S5E5I5 
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36. Extremes - all wet 5 30 5 5 5 T5P30S5E5I5 

37. Extremes - all dry 5 -30 5 5 5 T0P-30S5E5I5 

38. Mid-range 1.7 1.7 1.7 1.7 1.7 T1.7P1.7I1.7 

39. Mid-range 1.7 1.7 3.4 3.4 3.4 T1.7P1.7I3.4 

40. Mid-range 1.7 3.4 1.7 1.7 1.7 T1.7P3.4I1.7 

41. Mid-range 3.4 1.7 1.7 1.7 1.7 T3.4P1.7I1.7 

42. Mid-range 1.7 3.4 3.4 3.4 3.4 T1.7P3.4I3.4 

43. Mid-range 3.4 3.4 1.7 1.7 1.7 T3.4P3.4I1.7 

44. Mid-range 3.4 1.7 3.4 3.4 3.4 T3.4P1.7I3.4 

45. Mid-range 3.4 3.4 3.4 3.4 3.4 T3.4P3.4I3.4 

 

 

The full range of values used for each climate parameter is listed in Table A2-2. Ranges 

for each parameter were informed by Global Climate Models (GCMs) so that decision scaling 

scenarios would represent actual expected outcomes for future conditions. The range of values 

for the three precipitation variability metrics were calculated from daily precipitation data from 

10 GCMs at both RCP 4.5 and 8.5 emissions scenarios by Persad et al (2020). The values 

represent change between present-day (2006-2035) and end-of-century (2075-2099) conditions 

for each variability metric. The 10 GCMs used to define precipitation variability ranges (Table 

A2-3) are identified by the California Climate Change Technical Advisory Group as having the 
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best performance for California (Pierce et al. 2018), and are the same models used for other parts 

of this study. For each precipitation variability parameter calculated from GCM outputs, the 

lowest and highest values across all models were used as the range for decision scaling analysis 

(Table A2-2). In some cases, the sign differed between high and low model outcomes, meaning 

some models predicted a lowering of precipitation variability (usually at RCP4.5 levels) while 

others predicted an increase. The calculation method used to apply each precipitation variability 

parameter to the detrended 1950-2013 daily precipitation timeseries is described in Table A2-4.  

 

Table A2-2. Full range of each climate parameter used for decision scaling on the Merced River.  

Parameter name Units Low High Notes 
Temperature C 0 5 Shift applied uniformly across 

daily values as addition to 
original temperature value 

Precipitation 
volume 

Percentage -30 30 Shift applied uniformly across 
daily values as a multiplier 

Event scale 
precipitation 

intensity 

 
Percentage 

-21.25 70.35 Scale highest 3 days in each 
year by multiplier 

Seasonal scale 
precipitation 

variability 

Percentage -3.76 12.10 Scale days in wet season months 
by multiplier, and adjust dry 

season months to achieve net 
zero difference 

Interannual 
variability – shift 

in lowest 5% 
values 

Percentage 20.17 
(wetter) 

29.10 
(drier) 

Driest 5% of water years are 
scaled by a multiplier to either get 

drier or wetter 

Interannual 
variability – shift 
in highest 5% 

values 

Percentage 13.89 
(drier) 

28.89 
(wetter) 

Wettest 5% of water years are 
scaled by a multiplier to either get 

wetter or drier 

Interannual 
variability – shift 
in 20th percentile 

years 

Percentage 7.81 
(wetter) 

8.10 
(drier) 

Water years in the 20th percentile 
(driest 20% of years) are scaled 

by a multiplier to get drier or 
wetter 

Interannual 
variability – shift 
in 80th percentile 

years 

Percentage 9.56 
(drier) 

34.09 
(wetter) 

Water years above the 80th 
percentile (wettest 20% of years) 
are scaled by a multiplier to get 

wetter or drier 
 



 

169 

 

 

 

Table A2-3: Global climate models used in this study. 

Number Model name 

1 ACCESS1 

2 CanESM2 

3 CCSM4 

4 CESM1-BGC 

5 CMCC-CMS 

6 CNRM-CM5 

7 GFDL-CM3 

8 HadGEM2-CC 

9 HadGEM2-ES 

10 MIROC5 

 

 

Table A2-4. Precipitation variability parameters implemented in the decision scaling framework and modeled with 
the SAC-SMA-DS model on the Merced River. 

Metric Description Implementation 

Event 
Intensity 

Proportion of annual precipitation 
occurring in the three wettest days of 
the year. 

The three wettest days of the year are 
scaled with a multiplier, and dry season 
precipitation is adjusted with a multiplier 
to achieve net zero difference in annual 
precipitation.  

Seasonal 
Variability 

Proportion of annual precipitation 
occurring in the wet (November-

Precipitation in all days of the wet 
season months is scaled with a 
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March) and dry (April-October) 
season months.  

multiplier to adjust. Precipitation in the 
dry season is then adjusted with a 
multiplier to account for the change in 
the wet season, to achieve net zero 
difference in annual precipitation. 

Interannual 
Variability 

This metric incorporates two 
measures of interannual intensity: 1) 
The number of years in the POR that 
occur under the 20th percentile or 
above the 80th percentile of annual 
precipitation, and 2) The percentile 
of total annual precipitation of the 
wettest and driest years on records. 

Two adjustments take place: 1) Years 
under (over) the 80th (20th) percentile 
of annual precipitation are scaled with a 
multiplier enough to reach the level of 
the 80th (20th) percentile of annual 
precipitation, pre-adjustment. 2) The 
wettest (driest) year on record is scaled 
with a multiplier.  
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Table A2-5. Eco-exceedance results for decision scaling on the Merced River. See Table A2-1 for a description of 
each scenario. Eco-exceedance is calculated as the percent of functional flow metrics for each scenario that exceeds 
the range in the control scenario, reported as a total for each functional flow component. 

 

Scenario name Scenario 
type

Total 
exceedance

Annual 
metrics

Fall 
pulse

Wet 
season

Peak 
flows

Spring 
recession

Dry 
season

SACSMA_T0P0S0E0I0 Control 0 0 0 0 0 0 0
SACSMA_T1P0S0E0I0 DT-OAT 2.8 2.4 1.1 2.4 4.8 3.6 3.6
SACSMA_T2P0S0E0I0 DT-OAT 4.1 4 1.1 3.6 3.2 5.6 6
SACSMA_T3P0S0E0I0 DT-OAT 6.3 3.2 1.6 4 6.3 13.5 6.3
SACSMA_T4P0S0E0I0 DT-OAT 9.8 4.8 1.6 4.8 6.3 21 13.1
SACSMA_T5P0S0E0I0 DT-OAT 13.9 5.6 1.6 6.7 6.3 31 19.4
SACSMA_T0P-30S0E0I0 DP-OAT 5.8 7.9 1.6 6.3 11.1 3.6 8.3
SACSMA_T0P-20S0E0I0 DP-OAT 3.2 3.2 1.1 3.6 3.2 2.4 5.2
SACSMA_T0P-10S0E0I0 DP-OAT 1.6 3.2 0.5 2 3.2 0.8 1.6
SACSMA_T0P10S0E0I0 DP-OAT 2.8 2.4 1.1 2.4 1.6 1.2 6.7
SACSMA_T0P20S0E0I0 DP-OAT 4.6 4 2.1 6.3 1.6 1.2 9.1
SACSMA_T0P30S0E0I0 DP-OAT 6.6 5.6 2.1 7.9 7.9 1.2 14.3
SACSMA_T0P0S1E0I0 DI-S-OAT 1.8 1.6 1.1 2.4 3.2 1.6 1.6
SACSMA_T0P0S2E0I0 DI-S-OAT 0.9 1.6 0 0.4 3.2 0.8 1.2
SACSMA_T0P0S3E0I0 DI-S-OAT 1.3 1.6 0 1.2 1.6 0.8 2.8
SACSMA_T0P0S4E0I0 DI-S-OAT 1.5 1.6 0 2 1.6 1.2 2.4
SACSMA_T0P0S5E0I0 DI-S-OAT 1.7 1.6 0 2.4 1.6 1.6 2.4
SACSMA_T0P0S0E1I0 DI-E-OAT 0.7 0.8 0 0.4 0 0.4 2
SACSMA_T0P0S0E2I0 DI-E-OAT 1.6 2.4 1.1 1.6 3.2 1.2 1.6
SACSMA_T0P0S0E3I0 DI-E-OAT 2.2 3.2 2.1 2.4 3.2 1.2 2.4
SACSMA_T0P0S0E4I0 DI-E-OAT 2.2 4 2.1 2 4.8 1.2 2
SACSMA_T0P0S0E5I0 DI-E-OAT 3.1 4 2.1 2.8 9.5 1.6 3.6
SACSMA_T0P0S0E0I1 DI-I-OAT 1.2 2.4 0.5 0.8 3.2 0.8 1.6
SACSMA_T0P0S0E0I2 DI-I-OAT 1.7 3.2 1.1 1.6 4.8 1.2 1.2
SACSMA_T0P0S0E0I3 DI-I-OAT 1.1 2.4 0.5 0.8 1.6 0.4 1.6
SACSMA_T0P0S0E0I4 DI-I-OAT 3.4 2.4 1.1 1.6 3.2 3.2 7.5
SACSMA_T0P0S0E0I5 DI-I-OAT 4 5.6 1.1 3.6 1.6 2.8 7.5
SACSMA_T0P0S5E5I5 Extremes 4.8 6.3 2.6 2.8 7.9 2.4 9.1
SACSMA_T0P-30S0E0I0 Extremes 5.8 7.9 1.6 6.3 11.1 3.6 8.3
SACSMA_T0P-30S5E5I5 Extremes 8.9 15.9 1.1 7.5 15.9 5.6 14.3
SACSMA_T0P30S5E5I5 Extremes 9 11.9 2.6 8.7 15.9 2.4 17.5
SACSMA_T5P-30S0E0I0 Extremes 19.6 16.7 0.5 15.1 14.3 29 31.7
SACSMA_T5P0S5E5I5 Extremes 19.1 11.1 3.2 12.7 15.9 35.3 26.2
SACSMA_T5P-30S5E5I5 Extremes 24.6 24.6 3.2 14.3 15.9 39.3 38.5
SACSMA_T5P30S5E5I5 Extremes 21.3 16.7 4.2 13.9 33.3 38.5 23.4
SACSMA_T1.7P1.7I1.7 Mid-range 4.3 4 0.5 4.4 4.8 5.6 6
SACSMA_T1.7P1.7I3.4 Mid-range 6.7 5.6 2.1 4.4 11.1 8.7 9.9
SACSMA_T1.7P3.4I1.7 Mid-range 4.2 3.2 1.6 4 7.9 5.2 5.2
SACSMA_T1.7P3.4I3.4 Mid-range 6.3 5.6 1.6 3.6 12.7 8.3 9.5
SACSMA_T3.4P1.7I1.7 Mid-range 7.8 4.8 1.6 4.8 4.8 15.9 9.9
SACSMA_T3.4P1.7I3.4 Mid-range 10.6 7.1 2.1 6.7 11.1 19 13.9
SACSMA_T3.4P3.4I1.7 Mid-range 7.9 4.8 1.6 4 11.1 15.9 9.5
SACSMA_T3.4P3.4I3.4 Mid-range 9.2 6.3 1.6 4.8 14.3 16.7 11.9
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Table A2-6. Functional flow metric values for each decision scaling scenario in the Merced River case study, 
averaged across the period of record (1950-2013). Table is split into two parts to improve readability. 

 

 

Peak Flow

Magnitude Timing Duration

Magnitude 
10th 

percentile

Magnitude 
50th 

percentile Timing Duration
Annual Peak 
Magnitude

SACSMA_CTR_T0P0S0E0I0 Control 12254.7 6.0 5.0 2130.8 4976.5 102.3 90.8 22062.3
SACSMA_OATT_T1P0S0E0I0 DT-OAT 13480.7 3.3 5.0 1904.7 4323.6 99.0 89.3 24516.2
SACSMA_OATT_T2P0S0E0I0 DT-OAT 10224.5 3.3 4.8 1566.6 3391.8 34.5 120.3 27184.3
SACSMA_OATT_T3P0S0E0I0 DT-OAT 11352.1 3.3 4.8 1759.6 4899.7 34.5 79.8 31060.9
SACSMA_OATT_T4P0S0E0I0 DT-OAT 15102.5 4.3 4.7 1685.9 5722.6 35.3 38.7 35712.3
SACSMA_OATT_T5P0S0E0I0 DT-OAT 16212.2 4.3 5.0 1786.4 6257.8 35.3 38.7 38170.4
SACSMA_OATP_T0P-10S0E0I0 DP-OAT 10930.2 4.8 5.2 1701.0 4309.3 105.4 84.0 17469.8
SACSMA_OATP_T0P-20S0E0I0 DP-OAT 8412.1 4.8 5.2 1653.4 4174.3 127.4 60.4 13614.2
SACSMA_OATP_T0P-30S0E0I0 DP-OAT 5164.1 4.0 4.3 1509.7 3559.4 128.7 59.0 9770.9
SACSMA_OATP_T0P10S0E0I0 DP-OAT 14805.0 6.0 4.8 2917.3 6130.8 112.3 83.8 26194.5
SACSMA_OATP_T0P20S0E0I0 DP-OAT 17426.9 6.0 4.8 3128.6 6473.5 112.3 84.0 30329.9
SACSMA_OATP_T0P30S0E0I0 DP-OAT 20047.0 6.0 4.8 3416.1 7710.6 112.8 88.5 34396.8
SACSMA_OATS_T0P0S1E0I0 DI-S-OAT 12193.3 6.0 5.0 2268.0 5273.9 106.8 86.3 21905.8
SACSMA_OATS_T0P0S2E0I0 DI-S-OAT 12259.1 6.0 5.0 2116.4 4963.8 102.3 90.8 22064.8
SACSMA_OATS_T0P0S3E0I0 DI-S-OAT 12306.2 6.0 4.8 2248.0 4841.4 103.5 89.8 22214.5
SACSMA_OATS_T0P0S4E0I0 DI-S-OAT 12336.2 6.0 4.5 2343.5 5131.6 111.0 84.5 22341.0
SACSMA_OATS_T0P0S5E0I0 DI-S-OAT 13567.8 4.8 5.0 1960.3 5446.7 114.8 81.8 21649.5
SACSMA_OATE_T0P0S0E1I0 DI-E-OAT 8998.4 4.8 4.4 2202.4 5046.5 108.0 84.0 18330.7
SACSMA_OATE_T0P0S0E2I0 DI-E-OAT 12382.6 6.0 5.0 2133.7 4974.4 102.3 90.8 22335.4
SACSMA_OATE_T0P0S0E3I0 DI-E-OAT 14278.0 3.3 6.0 1698.1 4366.9 99.3 92.5 26219.1
SACSMA_OATE_T0P0S0E4I0 DI-E-OAT 16292.4 3.3 5.3 1682.5 4307.9 99.3 92.3 30233.1
SACSMA_OATE_T0P0S0E5I0 DI-E-OAT 18354.9 3.3 5.3 1692.5 4305.8 99.5 94.5 34305.0
SACSMA_OATI_T0P0S0E0I1 DI-I-OAT 11860.8 3.3 5.8 1644.5 4234.2 99.3 92.0 21108.1
SACSMA_OATI_T0P0S0E0I2 DI-I-OAT 12126.3 6.0 5.0 2116.6 4942.1 102.3 90.8 21804.4
SACSMA_OATI_T0P0S0E0I3 DI-I-OAT 12822.7 6.0 5.0 2420.9 5419.8 110.8 82.5 23336.6
SACSMA_OATI_T0P0S0E0I4 DI-I-OAT 11606.7 4.8 4.4 2549.6 5821.5 115.0 80.2 24287.2
SACSMA_OATI_T0P0S0E0I5 DI-I-OAT 12149.6 4.8 4.4 2959.1 6449.4 119.0 78.4 25844.4
SACSMA_EXT_T0P-30S5E5I5 Extremes 11030.2 4.8 5.0 1291.3 3337.4 112.6 77.6 19887.2
SACSMA_EXT_T0P30S5E5I5 Extremes 32012.0 6.3 5.3 2763.2 6749.4 92.8 116.8 61455.7
SACSMA_EXT_T0P0S5E5I5 Extremes 20598.6 6.3 5.3 1981.7 4629.0 89.5 109.3 41146.0
SACSMA_EXT_T5P-30S0E0I0 Extremes 6066.6 3.3 4.5 990.2 2879.0 34.5 45.8 18578.9
SACSMA_EXT_T5P-30S5E5I5 Extremes 13406.2 4.3 5.3 967.6 3554.6 33.7 26.3 39173.8
SACSMA_EXT_T5P0S5E5I5 Extremes 8344.5 3.5 5.5 1479.8 6551.6 36.0 29.0 78176.9
SACSMA_EXT_T5P30S5E5I5 Extremes 14374.3 3.5 5.5 2328.1 10498.1 39.0 26.0 114045.7
SACSMA_MID_T1.7P1.7I1.7 Mid-range 12758.9 3.3 5.3 1175.6 2401.2 29.8 151.3 23890.3
SACSMA_MID_T1.7P1.7I3.4 Mid-range 14014.9 4.3 4.3 1290.1 4607.7 35.3 58.3 35707.6
SACSMA_MID_T1.7P3.4I1.7 Mid-range 15780.5 4.3 4.3 1690.6 5676.6 35.3 60.7 36250.7
SACSMA_MID_T1.7P3.4I3.4 Mid-range 20400.8 4.3 4.3 1799.4 6516.1 35.3 60.0 49835.6
SACSMA_MID_T3.4P1.7I1.7 Mid-range 12577.2 4.3 4.7 1469.2 4572.0 35.0 57.7 30737.2
SACSMA_MID_T3.4P1.7I3.4 Mid-range 16642.0 4.3 4.7 1241.7 6378.4 35.3 24.3 43049.5
SACSMA_MID_T3.4P3.4I1.7 Mid-range 18635.3 4.3 5.0 1872.1 7071.4 35.3 38.3 43343.3
SACSMA_MID_T3.4P3.4I3.4 Mid-range 23986.1 4.3 5.0 1770.0 8962.7 35.3 24.3 59507.4

Wet Season BaseflowFall Pulse

Model
Scenario 

type
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Magnitude Timing Duration

Recession 
rate of 
change

Magnitude 
50th 

percentile

Magnitude 
90th 

percentile Timing Duration
Average 

annual flow
Coefficient 
of variation

SACSMA_CTR_T0P0S0E0I0 Control 10601.5 193.0 62.0 0.0325 270.1 1258.5 255.0 159.8 2842.2 1.3
SACSMA_OATT_T1P0S0E0I0 DT-OAT 7469.7 188.3 57.8 0.0314 309.0 1413.4 246.0 166.5 2429.8 1.4
SACSMA_OATT_T2P0S0E0I0 DT-OAT 9488.2 154.8 83.3 0.0341 325.8 1304.9 238.0 140.3 2702.0 1.4
SACSMA_OATT_T3P0S0E0I0 DT-OAT 11466.0 114.3 114.5 0.0351 333.5 1256.8 228.8 151.0 2680.0 1.5
SACSMA_OATT_T4P0S0E0I0 DT-OAT 15963.9 74.0 144.0 0.0365 83.9 375.7 218.0 164.0 2568.6 1.8
SACSMA_OATT_T5P0S0E0I0 DT-OAT 16982.8 74.0 70.0 0.0340 152.7 1477.1 144.0 237.7 2532.5 2.0
SACSMA_OATP_T0P-10S0E0I0 DP-OAT 8642.6 189.4 64.6 0.0325 348.6 1482.8 254.0 180.0 2241.8 1.3
SACSMA_OATP_T0P-20S0E0I0 DP-OAT 7592.6 187.8 64.8 0.0318 286.8 1107.3 252.6 181.2 1848.2 1.3
SACSMA_OATP_T0P-30S0E0I0 DP-OAT 6073.0 187.7 62.5 0.0320 193.3 753.1 250.2 166.5 1483.3 1.2
SACSMA_OATP_T0P10S0E0I0 DP-OAT 11776.2 196.0 59.5 0.0325 318.3 1457.5 255.5 155.8 3273.3 1.3
SACSMA_OATP_T0P20S0E0I0 DP-OAT 12662.2 196.3 60.5 0.0351 362.0 1736.4 256.8 156.5 3704.0 1.3
SACSMA_OATP_T0P30S0E0I0 DP-OAT 13374.7 201.3 57.3 0.0348 413.1 2020.2 258.5 155.0 4135.2 1.3
SACSMA_OATS_T0P0S1E0I0 DI-S-OAT 10434.0 193.0 61.3 0.0330 278.9 1204.0 254.3 158.0 2848.2 1.2
SACSMA_OATS_T0P0S2E0I0 DI-S-OAT 10610.3 193.0 62.0 0.0326 270.6 1262.0 255.0 159.8 2841.6 1.3
SACSMA_OATS_T0P0S3E0I0 DI-S-OAT 10753.6 193.3 62.3 0.0323 272.8 1247.7 255.5 158.3 2838.9 1.3
SACSMA_OATS_T0P0S4E0I0 DI-S-OAT 10892.9 195.5 61.3 0.0312 277.2 1282.4 256.8 157.0 2840.8 1.3
SACSMA_OATS_T0P0S5E0I0 DI-S-OAT 10080.7 196.6 60.4 0.0306 470.0 1881.4 257.0 176.4 2647.3 1.3
SACSMA_OATE_T0P0S0E1I0 DI-E-OAT 10097.5 192.0 61.0 0.0345 405.1 1890.2 253.0 154.6 2866.0 1.1
SACSMA_OATE_T0P0S0E2I0 DI-E-OAT 10606.0 193.0 61.8 0.0327 270.5 1260.6 254.8 160.0 2844.6 1.3
SACSMA_OATE_T0P0S0E3I0 DI-E-OAT 8961.7 191.8 61.5 0.0327 338.2 1421.3 253.3 163.0 2497.5 1.4
SACSMA_OATE_T0P0S0E4I0 DI-E-OAT 8986.4 191.5 60.5 0.0330 313.7 1404.0 252.0 164.3 2528.6 1.5
SACSMA_OATE_T0P0S0E5I0 DI-E-OAT 8645.4 194.0 56.8 0.0325 143.6 507.4 250.8 130.0 2558.9 1.5
SACSMA_OATI_T0P0S0E0I1 DI-I-OAT 8674.0 191.3 64.0 0.0320 361.6 1389.1 255.3 161.0 2385.5 1.3
SACSMA_OATI_T0P0S0E0I2 DI-I-OAT 10501.0 193.0 62.0 0.0317 267.3 1243.9 255.0 159.8 2816.3 1.3
SACSMA_OATI_T0P0S0E0I3 DI-I-OAT 11011.4 193.3 62.0 0.0327 291.4 1430.2 255.3 157.0 2963.9 1.3
SACSMA_OATI_T0P0S0E0I4 DI-I-OAT 10888.8 195.2 58.6 0.0374 509.2 2527.8 253.8 150.6 3255.2 1.2
SACSMA_OATI_T0P0S0E0I5 DI-I-OAT 11153.3 197.4 57.0 0.0364 565.3 2897.4 254.4 151.6 3438.9 1.2
SACSMA_EXT_T0P-30S5E5I5 Extremes 7227.4 190.2 63.6 0.0310 179.9 822.9 253.8 170.0 1775.4 1.5
SACSMA_EXT_T0P30S5E5I5 Extremes 14127.9 209.5 53.8 0.0422 533.8 2656.5 263.3 149.0 4798.5 1.5
SACSMA_EXT_T0P0S5E5I5 Extremes 11741.9 198.8 58.3 0.0340 352.0 1747.8 257.0 156.3 3358.4 1.5
SACSMA_EXT_T5P-30S0E0I0 Extremes 10764.2 80.3 80.0 0.0342 117.8 1044.8 160.3 219.5 1374.7 1.7
SACSMA_EXT_T5P-30S5E5I5 Extremes 16499.6 60.0 107.7 0.0311 81.9 746.9 167.7 209.7 1698.8 2.5
SACSMA_EXT_T5P0S5E5I5 Extremes 46252.0 65.0 86.0 0.0298 288.6 1852.3 151.0 232.5 3296.8 2.5
SACSMA_EXT_T5P30S5E5I5 Extremes 67558.2 65.0 89.0 0.0308 498.9 2595.8 154.0 229.5 4844.6 2.6
SACSMA_MID_T1.7P1.7I1.7 Mid-range 6485.5 181.0 57.5 0.0328 221.5 1175.5 238.5 173.5 2059.5 1.5
SACSMA_MID_T1.7P1.7I3.4 Mid-range 14248.6 93.7 144.3 0.0324 116.8 458.2 238.0 142.0 2499.5 1.7
SACSMA_MID_T1.7P3.4I1.7 Mid-range 14673.5 96.0 145.7 0.0350 133.7 514.7 241.7 140.0 3068.6 1.5
SACSMA_MID_T1.7P3.4I3.4 Mid-range 24036.4 95.3 145.0 0.0372 177.3 596.9 240.3 141.0 3387.6 1.7
SACSMA_MID_T3.4P1.7I1.7 Mid-range 11606.9 92.7 130.0 0.0361 81.4 352.1 222.7 159.0 2199.7 1.7
SACSMA_MID_T3.4P1.7I3.4 Mid-range 18843.7 59.7 162.0 0.0395 101.5 404.6 221.7 160.0 2463.6 2.0
SACSMA_MID_T3.4P3.4I1.7 Mid-range 19985.0 73.7 151.7 0.0366 120.9 456.8 225.3 156.3 3025.8 1.8
SACSMA_MID_T3.4P3.4I3.4 Mid-range 31660.5 59.7 165.3 0.0389 131.7 522.3 225.0 156.7 3361.1 2.0

Annual MetricsDry SeasonSpring Recession

Model
Scenario 

type
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1. Regime shift analysis on functional flow metrics 

Table A3-1. Regime shift analysis results for functional flow metrics of streamflow above and below Derby 
Dam. The year of the greatest shift is reported, along with the magnitude and percent change in each metric.  

 

2. Water Surface Level Plots 

 

Water surface level plots represent periodic surface water level monitoring that was 

performed at each field site 2020 – 2021. The purpose of these measurements was to develop a 

partial flow-rating curve, relating surface water level changes at the field sites to the surface 

water levels recorded at the nearest USGS gage site. These rating curves were used to ensure that 

water level measured at long-term gaging stations would be a reasonable representation of 

Metric Units Years
Percent 
Difference

Magnitude 
of difference Years

Percent 
Difference

Magnitude 
of difference

Fall pulse flow magnitude cms 1952 317.7 374.2 1985 7.0 79.4
Fall pulse flow timing timing (date) 1954 16.6 3.0 1978 25.3 7.7
Wet season baseflow median 
magnitude cms 1959 31.3 234.8 1988 -9.2 -114.7
Wet season baseflow timing timing (date) 1960 -22.9 -27.0 1986 16.0 14.1
Wet season baseflow duration days 1957 29.9 31.3 1985 -9.7 -12.9
Peak magnitude cms 1988 -3.9 -124.5 1988 -17.5 -705.8
Spring recession magnitude cms 1988 -3.9 -78.1 1988 -16.6 -439.7
Spring recession timing timing (date) 1989 5.8 12.9 1989 1.4 2.9
Spring recession duration days 1966 13.4 13.4 1964 46.0 26.6
Spring recession rate of change percent 1959 -59.9 -0.109 1961 -23.8 -0.022
Dry season median magnitude cms 1972 726.5 132.2 1988 -14.0 -43.4
Dry season magnitude (90th 
percentile) cms 1974 306.6 208.3 1987 -17.9 -91.6
Dry season timing timing (date) 1949 11.4 21.4 1989 4.7 19.9
Dry season duration days 1955 -27.8 -50.3 1985 2.0 -20.0
Average annual flow cms 1970 76.6 240.8 1988 -10.0 -78.8
Coefficient of variation percent 1965 -45.0 -0.883 1961 -10.2 -0.080

Downstream flow Upstream flow
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conditions at each study site. They also revealed the differences in water surface – flow 

relationships among field sites.  

 

 

Figure A3-1. Water surface level rating curve between field site US-1 and USGS gage #10350000. Observed water 
surface height is reported as heights above the lowest recorded level.  
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Figure A3-2. Water surface level rating curve between field site US-2 and USGS gage #10350000. Observed water 
surface height is reported as heights above the lowest recorded level.  
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Figure A3-4. Water surface level rating curve between field site US-3 and USGS gage #10350000. Observed water 
surface height is reported as heights above the lowest recorded level.  
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Figure A3-5. Water surface level rating curve between field site DS-1 and USGS gage #10350000. Observed water 
surface height is reported as heights above the lowest recorded level.  
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Figure A3-6. Water surface level rating curve between field site DS-2 and USGS gage #10350000. Observed water 
surface height is reported as heights above the lowest recorded level.  

 

 

3. Shallow Groundwater Monitoring Plots 
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Figure A3-7. Shallow groundwater at Site US-2 reported at hourly intervals, along with hourly surface water from 
the nearest USGS gage on the Truckee River at Tracy (# 10350340). The y-axis scale is relative and adjusted to 
allow comparison between the two data sources. Note the flat-line period in the shallow groundwater plot between 
06/2021 – 10/2021 is due to groundwater falling below the sensor depth.   

 

Figure A3-8. Shallow groundwater at Site DS-1 reported at hourly intervals, along with hourly surface water from 
the nearest USGS gage on the Truckee River at Wadsworth (# 10351650). The y-axis scale is relative and adjusted 
to allow comparison between the two data sources.  
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4. Tukey’s HSD results for all trees 

 

Table A3-2. Tukey’s Honestly Significant Difference (HSD) outcomes for all trees with records beginning at or 
before 1967 for upstream trees and 1958 for downstream trees. A score of TRUE indicates significance between 
groups (growth before or after 1973 (1983) for downstream (upstream) trees at a p<0.05 level. The average change 
in growth between groups is also presented, for individual trees and as a group average.  
Site Tree ID Tukey 

HSD 
1973 

Mean 
change 
BAI 1973 
(mm2) 

Percent 
change 
1973  

Tukey 
HSD 
1982 

Mean 
change 
BAI 1982 
(mm2) 

Percent 
change 
1982 

US-1 11       TRUE -6278 -48 

US-1 13       TRUE 4831 94 

US-1 16       FALSE 1204 20 

US-1 23       TRUE 1693 308 

US-1 4       FALSE 2662 25 

US-1 6       TRUE 4277 286 

US-1 7       TRUE 3461 149 

US-3 1       TRUE 2741 83 

US-3 13       TRUE 3046 63 

US-3 15       FALSE -152 -8 

US-3 16       FALSE -734 -6 

US-3 17       TRUE 1244 46 

US-3 2       TRUE 11492 227 

US-3 20       FALSE -462 -16 

US-3 6       FALSE -926 -16 
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US-3 7       TRUE -2091 -37 

US total           1626 73 

DS-1 11 TRUE 2285 35       

DS-1 18 TRUE 2414 65       

DS-1 5 TRUE 4099 123       

DS-2 13 TRUE 4961 372       

DS-2 14 FALSE 848 15       

DS-2 15 FALSE -962 -10       

DS-2 16 TRUE 704 70       

DS-2 17 TRUE -1129 -17       

DS-2 18 TRUE 1609 74       

DS-2 19 FALSE 1050 12       

DS-2 20 TRUE 1575 34       

DS-2 5 TRUE 5672 170       

DS-2 6 TRUE 10103 445       

DS-2 7 TRUE 8639 391       

DS total     2991 127       
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5. Bayesian Statistical Modeling 

Table A3-3. Primary and alternate versions of the Bayesian statistical model using different combinations of 
parameters are presented and implemented as a sensitivity analysis.  
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Table A3-4. Widely Applicable Information Criterion (WAIC) scores for the primary Bayesian model and all 
alternate models. A lower WAIC score indicates a better predictive performance of the model, balanced against the 
number of model parameters. The SE columns represents standard error. Since the primary model has the lowest 
WAIC score, it is considered the best performing model.   
 

Model WAIC SE 
All parameters (primary model) 6689 3.76 
All parameters (growing season precipitation) 6733 3.79 
Spring reccesion 7410 3.81 
Dry season baseflow 7227 3.78 
Wet season baseflow 7243 3.80 
Peak flow 7656 3.71 
Fall pulse 7653 3.65 
No VPD 7654 3.79 
No temperature 7664 3.81 
Average flow 7607 3.80 

 


