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Uncertainty Propagation of Hydrologic Modeling
in Water Supply System Performance: Application

of Markov Chain Monte Carlo Method
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and Samuel Sandoval-Solis, Ph.D., M.ASCE3

Abstract: It is imperative for cities to develop sustainable water management and planning strategies in order to best serve urban com-
munities that are currently facing increasing population and water demand. Water resources managers are often chastened by experiencing
failures attributed to natural extreme droughts and floods. However, recent changes in water management systems have been responding to
these uncertain conditions. Water managers have become thoughtful about the adverse effects of uncertain extreme events on the performance
of water supply systems. Natural hydrologic variability and inherent uncertainties associated with the future climate variations make the
simulation and management of water supplies a greater challenge. The hydrologic simulation process is one of the main components in
integrated water resources management. Hydrologic simulations incorporate uncertain input values, model parameters, and a model structure.
Therefore, stochastic streamflow simulation and prediction, and consideration of uncertainty propagation on performance of water supply
systems (WSSs) are essential phases for efficient management of these systems. The proposed integrated framework in this study models a
WSS by taking into account the dynamic nature of the system and utilizing a Markov chain Monte Carlo (MCMC) algorithm to capture the
uncertainties associated with hydrologic simulation. Hydrologic responses from the results of a rainfall-runoff model for three watersheds of
Karaj, Latyan, and Lar in Tehran, Iran, as the case study are used as inputs to the reservoirs. Results confirm that uncertainties associated with
the hydrologic model’s parameters propagate through the simulation and lead to a wide variation in reservoir storage and WSS performance
metrics such as vulnerability and reliability. For example, water storage simulation in the Karaj Reservoir can vary up to 70% compared with
the observed values. This causes contradiction and conflict in the management of reservoirs and water systems and decision making.
The results emphasize the importance of analyzing WSS performance under uncertain conditions to improve the simulation of natural proc-
esses and support water managers for a more efficient decision-making process. DOI: 10.1061/(ASCE)HE.1943-5584.0001646. © 2018
American Society of Civil Engineers.

Author keywords: Water supply system; Rainfall-runoff model; Uncertainty analysis; Markov chain; Monte Carlo; System
dynamics.

Introduction

The stationarity has hitherto been the main assumption for the
operation and management of water systems (Milly et al. 2008).
Water supply systems (WSSs) are designed to deliver water to com-
munities over the length of the design period and are based on
archaic rules. Changes in hydroclimatology and infrastructures
affect WSSs, thus water managers should consider these changes
for further risk assessment and planning. To capture the effect of
hydroclimatic uncertainty propagation on water supply systems’
performance, there is a need to develop integrated stochastic
models. To support the decision-making process and capture uncer-
tainties in integrated water resources management, integrated

approaches have been developed to combine water system models
(e.g., Goharian et al. 2016) along with the performance assessment
concepts (e.g., Hashimoto et al. 1982) for water supply systems
(e.g., Fowler et al. 2003; Ajami et al. 2008).

Simulating the physics of the formation and movement proc-
esses of water on Earth is a leading phase in the integrated planning
and management of WSSs. The uncertainty in the amount and tim-
ing of inflow to the system can be presented by incorporating the
full range of streamflow variation simulated by a hydrologic model
(Georgakakos et al. 2004). However, study of the uncertainties as-
sociated with the hydrologic model parameters is not often taken
into consideration (Vrugt et al. 2003). Different approaches are
suggested for analyzing parameters’ uncertainty in the hydrological
modeling (Kitanidis and Bras 1980; Moradkhani et al. 2005; Ajami
et al. 2007).

The Monte Carlo (MC) method has gained a great acceptance
among researchers for uncertainty analysis because it has
various benefits over conventional uncertainty analysis methods
(Papadopoulos and Yeung 2001). This method is often used in
the evaluation of complex environmental systems, such as models
used in hydrology or ecology. Marton et al. (2011) used the Monte
Carlo approach to estimate the uncertainty of average monthly
streamflow discharges from the hydrologic model into the reservoir
system. The Monte Carlo approach was later combined with
Markov chain, called Markov chain Monte Carlo (MCMC), to
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provide an estimate of uncertainty on the hydrograph output of
hydrologic models. One MCMC-based approach is the Differential
Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al.
2008; Muleta et al. 2013). The DREAM algorithm simultaneously
runs different Markov chains and optimally approximates the pos-
terior distribution of the parameters. In this study, the DREAM
algorithm is used to incorporate the uncertainty associated with
the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrologic
model parameters on the evaluation of the WSS performance.

A simple way to represent the hydrological processes is using
rainfall-runoff models. A typical rainfall-runoff model includes
various coupled equations describing the flow of water on the sur-
face and subsurface, and predicating from subdaily to annual
streamflow. The HBV model, developed by the Swedish Meteoro-
logical and Hydrological Institute (SMHI), has been extensively
used for applications such as hydrological simulation and forecast-
ing, and uncertainty analysis of hydrologic modeling over the
last 20 years (Bergström 1990, 1995; Harlin and Kung 1992;
Aghakouchak and Habib 2010; Zahmatkesh et al. 2015). Beven
and Binley (1992), Kuczera and Parent (1998), Butts et al. (2004),
and Zahmatkesh et al. (2015) are examples of research on the
parameters’ uncertainty in rainfall-runoff modeling. Herein, the
HBV hydrologic model simulates streamflow time series as input
to the WSS model.

An integrated water resources management scheme is required
to incorporate not only the hydrological processes, but also the
dynamics, interdependencies, and interactions in a WSS. A WSS
consists of various water sectors as the end users, and interactions
among the WSS components. The system dynamics (SD) ap-
proach, introduced by Forrester (1961), offers a framework to study
the interactions and dynamics among the components that produce
fluctuations within a system and show temporal and sequential
characteristics of the system (Mirchi et al. 2012). Over the last
50 years, the SD approach has been applied to various water resour-
ces system studies, such as modeling water systems at the catch-
ment scale (Simonovic and Fahmy 1999; Winz et al. 2009; Madani
and Mariño 2009; Karamouz et al. 2013), water accounting
systems for managers (Xu et al. 2002; Goharian 2016), decision
support systems (Stewart et al. 2004; Sehlke and Jacobson 2005),
participation of stakeholders in water management (Stave 2003;
Langsdale et al. 2009; Ahmad and Prashar 2010), and reservoir
operation (Ahmad and Simonovic 2000; Li et al. 2010;
Goharian et al. 2015). System dynamics software called STELLA
has been widely used for different modeling purposes. Karamouz
et al. (2013) developed a SD model of the Karaj Reservoir, Iran,
using STELLA to evaluate the performance of the system under
different conditions such as population growth and climate change.
In the present study, STELLA is used to develop an integrated
SD-based WSS model for the study area.

The goal of this paper is to provide a framework to assess the
uncertainty of hydrologic modeling on the performance of water
supply systems. For this purpose, first an uncertainty assessment
method is introduced that evaluates the uncertainty associated with
the hydroclimate processes. The hydrologic model parameters are
selected here as the source of uncertainty propagation in the hydro-
logic modeling and water supply system simulation. Developed
runoff hydrographs from the rainfall-runoff models will be used
as input to the WSS model. Finally, based on a system dynamics
simulation method, which represents the WSS, the uncertainty
bounds and changes in the performance of water supply systems
will be evaluated to represent the propagating of uncertainty in
different stages of the modeling process. Results from this study
benefit water managers to assess the adaptive capacity of the
systems.

Study Area: Tehran’s Water Supply System

The Tehran, Iran, metropolitan region was selected as the study area
to test the application of the proposed framework. Tehran is the
capital and the largest city in Iran and has a population of more
than 8 million people based on the 2010 census (Statistical Centre
of Iran 2015). The city has an area of 730 km2, located at the lat-
itude of 35°31′ to 35°57′ N and longitude of 51°4′ to 51°47′ E. The
average temperature is approximately 17°C. July is the hottest
month with a mean minimum temperature of 26°C and mean maxi-
mum temperature of 36°C. January is the coldest month with a
mean minimum temperature −1°C and mean maximum tempera-
ture 8°C. Most of the precipitation occurs from late autumn to
mid-spring. The average annual precipitation is approximately
232 mm (Statistical Centre of Iran 2015).

Tehran’s WSS consists of three surface reservoirs including
Karaj (in the west), Lar, and Latyan (in the east) (Fig. 1):
• Karaj Dam was constructed on the Karaj River in 1961. It sup-

plies approximately 30% of the municipal water demand in
Tehran and provides water for the irrigation area of approxi-
mately 500 km2 near the city of Karaj. The annual average
inflow to the reservoir is 472 millionm3 (MCM) and the max-
imum capacity of the reservoir is 202 MCM.

• Latyan Dam was built on Jajrood River in 1967. This is one of
Tehran’s main sources of water supply. The Latyan Reservoir
meets the irrigation water demand of approximately 300 km2

of farms in this region. The annual average inflow to the Latyan
reservoir is 245 MCM and the maximum capacity of the reser-
voir is 95 MCM.

• Lar Dam was constructed on the Lar River in 1982. The primary
objective behind building this reservoir was to supply Tehran’s
increasing municipal water demand during the 1970s and 1980s.
Moreover, this reservoir helps fulfill the irrigation water
demand in this region. The annual average inflow to the reser-
voir is 481 MCM and maximum capacity of the reservoir is
960 MCM.
The information regarding Tehran’s water supply system is

collated from Tehran Province Water & Wastewater (ABFA)
website (2017) and Karamouz et al. (1999).

In addition to the three main reservoirs, Taleghan Reservoir,
with a capacity of approximately 420 MCM in the west part of
Tehran, has been operating since 2006. This reservoir is deemed
of suppling approximately 278 MCM water for irrigation demand,
150 MCM for domestic water demand, and 12 MCM for environ-
mental and recreational purposes. Ideally, the surface water system
provides up to 800 MCM of water, 350 MCM by the Lar and
Latyan reservoirs, 300 MCM from the Karaj Reservoir, and 150
MCM by the Taleghan Reservoir. Because of a lack of information
about the Taleghan Reservoir operation, such as streamflow data
for calibration, validation, and uncertainty assessment, the time
period for this study was selected to be before the operation of
Taleghan Reservoir started (i.e., 2001–2006). In addition to surface
water resources, water can be withdrawn from the groundwater via
deep wells that are distributed throughout the system. The total
maximum allowable discharge from these wells is limited to
250 MCM. However, based on recent records, groundwater over-
draft in Tehran has been exceeded by up to 370 MCM during the
dry periods (Iran Ministry of Energy 2009).

The Tehran WSS has five water treatment plants (WTPs) with a
total maximum capacity of 19 m3=s. Karaj Reservoir provides water
for WTPs 1 and 2 with the total capacity of 11.5 m3=s. The water
is transferred from Latyan Reservoir to WTPs 3 and 4 through the
Teloo Tunnel with the maximum capacity of 10 m3=s. Water Treat-
ment Plant 5 also receives water from the Lar Reservoir. Supplied
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water through deep wells is added into the water distribution network
after meeting the required standards for treatment. A schematic of
Tehran’s WSS is shown in Fig. 1. The average water consumption
of Tehran is approximately 300 L per capita per day (Iran Ministry

of Energy 2013). The watersheds and location of the reservoirs are
illustrated in Fig. 2. The Karaj Reservoir watershed has an area of
874 km2. The watershed area for the Latyan, Lar, and Taleghan
reservoirs are 435, 675, and 960 km2, respectively.
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Fig. 1. Tehran, Iran, water supply system

Fig. 2. Watershed boundaries and reservoir locations in the study area in Tehran, Iran
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Methodology

An integrated framework is proposed to model the water supply
system and evaluate its performance by considering the uncertain-
ties in streamflow simulation. The proposed methodology includes
four main steps shown in Fig. 3.

Data Collection

Historical data, from the Iran Water Resources Management
Organization (2018) database, were collected and used to develop
the rainfall-runoff simulation model. Daily precipitation, tempera-
ture, and streamflow during the period of 2001–2006 were gathered
for the nearest synoptic stations to the centroid of the Karaj, Latyan,
and Lar watersheds. This time period serves as a sample time
period for conceptual purposes. Moreover, this time period has
sufficient and reliable data for the application of the proposed
framework, and subsequently further research can be straightfor-
wardly performed for other periods and wet, dry, and normal
years.

Streamflow Simulation

The HBV model is a conceptual numerical model of the watershed
physics and hydrological process that simulates runoff mainly us-
ing temperature (T), potential evapotranspiration, and precipitation
inputs (Bergström et al. 1992). Different routines in the model can
represent the snowmelt and runoff by the using the degree-day
method, soil moisture, evaporation, and groundwater. The three
main linear reservoir equations and channel routing by a triangular
weighting function form the core of the model. The general water
balance in HBV is as follows:

P − E −Q ¼ dðSPþ SM þ UZ þ LZ þ lakesÞ
dt

ð1Þ

where P = precipitation; E = evapotranspiration; Q = runoff; SP =
snow pack; SM = soil moisture; UZ = upper groundwater zone;
LZ = lower groundwater zone; and lakes = reservoir volume.
Groundwater recharge and actual evaporation are functions of ac-
tual water storage in a soil box and the runoff formation is repre-
sented by linear reservoir equations. Potential evaporation on day
t, EpotðtÞ, is calculated as

EpotðtÞ ¼ ð1þ CETðTðtÞ − TMÞÞEpot;M ð2Þ

where TðtÞ = temperature in day t; TM = monthly mean temper-
ature; Epot;M = monthly mean potential evaporation; and CET =
correction factor obtained through the model calibration
(Bergström et al. 1992). Table 1 contains the list of the model
parameters that are considered for the uncertainty analysis.

Uncertainty-Based Hydrologic Modeling

Uncertainty-based analysis of rainfall runoff can be used to deter-
mine the possible streamflow ranges and potential extreme events
in the watershed. To estimate the values of the model parameters,
calibration against historical observations is performed. A rainfall-
runoff model (M) can be expressed as

y ¼ MðI; θÞ ð3Þ

where y = watershed streamflow; θ = set of the model parameters;
and I = model input set.

Uncertainty Analysis Using MCMC Method

Monte Carlo simulation explains and transfers the propagation
of uncertainties in the hydrologic model parameters into the

3-Development of system dynamics model of 
the water supply system

3-1-Model calibration 3-2-Model components

1-Data collection

Regional rainfall, temperature 
and evapotranspiration

Historical 
runoff 

WSS 
information

2-3-Incorporating uncertainty 
associated with the model parameters 

using MCMC technique 

2- Uncertainty based hydrologic modeling

2-4-Analysis of ensembles of runoff timeseries corresponding to 
different sets of the generated parameters 

2-5-Iden fying the maximum and 
minimum range of runoff variation 

4-Evaluation of system performance

Reliability ResiliencyVulnerability

3-3-System simulation 

Surface water Groundwater Water allocation

Developing plansPopulation and demand

2-1-Development of rainfall-runoff model  

2-2-Hydrologic model 
calibration

Fig. 3. Proposed framework to investigate the effect of hydrologic
model uncertainty on water supply system performance

Table 1. HBV Model Parameters and the Corresponding Initial
Uncertainty Range

Parameter Description Initial range

DD Degree-day factor (mm °C−1 day−1) 3–7
K0 Near-surface-flow storage constant 0.05–0.2
K1 Interflow storage constant (day−1) 0.01–0.1
K2 Base flow storage constant (day−1) 0.01–0.05
Kp Percolation storage constant (day−1) 0.01–0.05
FC Maximum value of soil moisture

storage (mm)
100–200

L Threshold water level for near-surface
flow (mm)

2–5

BETA Shape coefficient 1–7
C Model coefficient 0.01–0.07
PWP Soil permanent wilting point (mm) 90–180
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uncertainties in the model output (i.e., streamflow). Monte Carlo is
a computational algorithm that generates samples of a parameter
from a defined probability distribution. In the first step, a domain
of all possible values for the parameter is defined. Then, a param-
eter is randomly generated from a prior probability distribution that
is specified over the domain. Here, the prior distribution is deemed
to be uniform considering the lack of available information for
parameters.

After parameterizing the probability distributions for each
parameter, MCMC sampler is utilized with the purpose of devel-
oping the Markov chain with predefined probability distributions
for the parameters (Hastings 1970). Application of MCMC assists
in estimating the posterior probability distribution function (PDF)
for the parameters.

Supposedly, discrete parameter X (a parameter from parameters’
set θ) has a probability density function of fXðxÞ on set A.
The expected value of function g for X can be shown as

EðgðxÞÞ ¼
X
x∈A

gðxÞfXðxÞ ð4Þ

For n samples of X, (x1; : : : ; xn) with the mean of gðxÞ, the MC
estimate of EðgðxÞÞ is expressed by

ǧnðxÞ ¼
1

n

Xn
i¼1

gðxiÞ ð5Þ

If EðgðxÞÞ exists for any arbitrarily small ε, then

limn→∞PðjǧnðxÞ − EðgðxÞÞj ≥ εÞ ¼ 0 ð6Þ

This means that as n gets larger, there is a small chance of ǧnðxÞ
deviating from EðgðxÞÞ. In the condition where n is large enough,
ǧnðxÞ delivered from the Monte Carlo experiment would be closer
to EðgðxÞÞ (Anderson and Anderson 1999).

A sequence of random values of parameter X (i.e., X1;
X2; : : : ;Xn) is a Markov chain if the conditional distribution of
Xnþ1 given X1; : : : ;Xn only depends on Xn. If the state space
of the Markov chain (which means the set where Xi occurs) is
finite, then the initial distribution can be assigned with vector
λ ¼ ðλ1; : : : :; λnÞ so that

PrðX1 ¼ xiÞ ¼ λii ¼ 1; : : : ; n ð7Þ

The transition probabilities can be stated with the use of
matrix P

PrðXnþ1 ¼ xjjXn ¼ xiÞ ¼ piji ¼ 1; : : : ; n and j ¼ 1; : : : ; n

ð8Þ

where pij = element of matrix P.
The DREAM algorithm (Vrugt et al. 2008) is employed to es-

timate the posterior PDFs of the parameters. The posterior PDFs are
obtained by utilizing a likelihood function and the prior distribution
based on the Bayesian approach. Likelihood function in MCMC
sampling, as a formal Bayesian approach of DREAM, is used to
correct the parameters’ prior distributions to converge to the pos-
terior distribution (Vrugt et al. 2008). The model simulation error,
e, is obtained by

eðθÞ ¼ ~y − yðθÞ ð9Þ

where yðθÞ and ~y = simulated and observed streamflow, respec-
tively. Accounting for the uncertainty associated with the

parameters, the model is calibrated by choosing a set of parameters
that results in the minimum simulation error. This paper’s
assumption (tested by using the skewness test of normality and
autocorrelation and partial autocorrelation estimations) is that the
errors are random and follow a Gaussian probability distribution.
For the Gaussian likelihood, the posterior PDF can be estimated
using the additive simple least-squares (SLS) objective function
(FSLS). When computing the PDFs of the parameters, the following
density function is used:

πðθjSÞ ∝ c × πðθÞ × FSLSðθjSÞ−n=2 ð10Þ

where c = normalizing constant; πðθÞ = prior distribution of θ; and
S = observed streamflow (composed of n events). The preceding
distribution combines the parameter’s likelihood with its prior
distribution according to the Bayesian theory.

Performance Evaluation of Streamflow Simulation

The following evaluation criteria are used to test the performance
of the HBV model in streamflow simulation:

Mean bias error∶MBE ¼ ðnÞ−1
Xn
i¼1

ðSi −OiÞ ð11Þ

Mean squared error∶MSE ¼ ðnÞ−1
Xn
i¼1

ðSi −OiÞ2 ð12Þ

Commonmean correlation∶CMC

¼
P

n
i¼1ðSi − ~SÞðOi − ~OÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðSi − ~SÞ2 Pn

i¼1 ðOi − ~OÞ2
q ð13Þ

where Oi and Si = observed and simulated streamflow in time step
i, respectively; ~O and ~S = mean values of observed and simulated
streamflow; MBE = measurement of accuracy that depicts the dif-
ference between the expected value of runoff (simulation) and its
true value (observation); MBE could be negative or positive, but the
values closer to zero are preferred; MSE, the second moment of the
bias, measures the average of the squares of the errors or deviations,
which is the difference between the observed and simulated runoff,
and is nonnegative, and values closer to zero are also preferred; and
CMC provides a tool for measuring the simulation performance and
varies between 0 and 1 for weak and perfect simulation, respec-
tively (Iliadis et al. 2007).

Development of the SD Model

The main objective of a WSS is to provide reliable water for various
water demands, such as municipal, agricultural, and industrial. A
simulation model provides an abstract representation of the WSS in
order to understand the key factors that control the system, predict
the future behavior of the WSS under changing conditions, and test
alternative policies. To evaluate the overall system performance,
interrelations of different components should be identified and
dynamically modeled via the SD approach.

Causal Loops and Relationships
The first step in creating a SD model is to draw the causal loops and
their relationships (Fig. 4). Casual loops can have either positive
(reinforcing) or negative (balancing) relationships and effects.
In Fig. 4, the key governing relationships for the Tehran WSS

© ASCE 04018013-5 J. Hydrol. Eng.
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are graphically shown. The plus signs above the tail of arrows show
the positive effect, while the negative relationships are depicted by
minus signs. The relationships and loops are drawn graphically us-
ing casual loop diagrams (CLDs), which helps provide a better
understanding of the interrelationships and interactions between
different system components graphically. As a general rule for a
WSS, more precipitation in a system means an increase in the
watersheds’ streamflow volume. This increase affects the down-
stream by raising the water level in the reservoir. Because the res-
ervoir maximum storage restricts storing more water in the system,
a larger capacity is needed within the system. The added capacity
can be achieved by constructing a new infrastructure or expanding
the existing reservoir’s capacity. New developments cause popula-
tion growth in the region, which leads to an increase in water de-
mand. The relationships among the components in Tehran’s water
system CLD are conceptually presented in Fig. 4.

After creating the CLD, the diagram should be converted to a
stock and flow diagram (SFD) in STELLA. A SFD is more a de-
tailed diagram that includes all the pieces and modules of the water
system. The WSS of Tehran is modeled based on the following six
components:
1. Surface water, which includes the following submodules:

a. The Karaj Dam and WTPs 1 and 2;
b. The Latyan Dam and WTPs 3 and 4; and
c. The Lar Dam and WTP 5.

2. Groundwater;
3. Water demand;
4. Water resources allocation;
5. Development plan (incorporating Taleghan Dam in the WSS);

and
6. Performance assessment.

Underlying Equations of SD Modeling
The surface water module of the water supply system includes the
model of three individual reservoirs of Karaj, Latyan, and Lar and
the linkages between them. While groundwater is assumed as an
external resource, water supply from the groundwater is limited
by a maximum allowable drawdown rate. For each of the surface
reservoirs, the mass balance equation is employed

∀i∶dViðtÞ ¼ dtðFIiðtÞ − FOiðtÞÞ ð14Þ

where dViðtÞ = variation of storage in reservoir i in month t;
FIiðtÞ = inflow to the reservoir i in month t; and FOiðtÞ = total
release from reservoir i in month t, which consists of three parts

FOiðtÞ ¼ FUiðtÞ þ FAiðtÞ þ FLiðtÞ ð15Þ
where FUiðtÞ and FAiðtÞ = water releases for domestic and agri-
cultural demands, respectively; and FLiðtÞ = total water loss from
reservoir.

To represent and define water allocation policies among the de-
mands, the higher priority is given to the municipal water need for
Tehran. Whenever there is a water deficit in the surface water sys-
tem, withdrawal from groundwater resources can increase up to
50% more than the maximum capacity withdrawal rate (250
MCM per year). This prioritization is derived based on the current
operation policies of the Tehran Province Water &Wastewater. The
value of FUiðtÞ is limited to the maximum structural capacity of the
reservoir release and the transfer canal capacity from reservoirs to
the WTPs. Variable FUiðtÞ includes two parts: FniðtÞ and FaiðtÞ,
which are the supply of water demand for domestic use under
normal conditions and under water shortage, respectively.

In each month and reservoir, FniðtÞ is distributed proportionally
between reservoirs based on the available stored water at the
beginning of the month

FniðtÞ ¼ ðTUDðtÞ − FGWwÞ × ViðtÞP
k
i¼1 ViðtÞ

ð16Þ

where k = total number of reservoirs in the WSS; ViðtÞ = available
volume of water in time t in reservoir i; TUDðtÞ = total domestic
water demand in month t; and FGWw = allowable discharge from
the groundwater resource. The minimum reservoir water volume,
Vmini, and reservoir maximum storage, Vmaxi, are subjected
to the structural properties of the reservoir, and are included in
a constraint

VminiðtÞ ≤ ViðtÞ ≤ VmaxiðtÞ ð17Þ
Variable FAiðtÞ has a specific value for each month (equally

distributed throughout the month) and each reservoir, and is limited
by the reservoir minimum storage

if ViðtÞ > VAminiðtÞ then FAiðtÞ ¼ PatternðmonthðtÞÞi
elseFAiðtÞ ¼ 0 ð18Þ

where Pattern (monthðtÞÞi = agricultural water demand in month t
from reservoir i.

Considering changes in groundwater storage, the area of the
aquifer (496 km2), and storage coefficient 0.06, the groundwater
level changes for each time step are calculated as

Δht ¼ ΔVGt=ð496 × 0.06Þ ð19Þ
where Δht = groundwater level change; and ΔVGt = groundwater
volume change during month t. More detail about the modeling of
the system can be found in Goharian (2012). Considering the avail-
ability of historical data and model limitations, the daily time step is
used for simulation. The model is calibrated for a 5-year period
from September 23, 2001 to September 23, 2006.

Water Supply System Performance Evaluation

Different performance metrics including reliability, resiliency, and
vulnerability (RRV) are selected to evaluate the WSS performance.
Karamouz et al. (2012, 2013) evaluated the reliability of part of
Tehran’s WSS under climate change conditions using reliability
(α) as the probability of nonoccurrence of failure during a certain
time period. The reliability of a system in general is calculated as
follows (Hashimoto et al. 1982):

Net Precipitation

Inflow

Stored water Water supply

Development

Water demand

Water shortage

Reservoir releaseFlooding risk

+

+
+

+

+

+

+

+

-

+

Fig. 4. Casual loop diagram of Tehran water supply system corre-
sponding to the long-term behavior of the reservoirs
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α ¼ Prob½Xt ∈ S�∀t ð20Þ
where S = set of the system desired outputs. In this paper, to cal-
culate the reliability (Rel), the following equation is employed:

Rel ¼ nsuc
ntotal

ð21Þ

where nsuc = number of days where the system has success (sat-
isfactory) status; and ntotal = total number of the days in the sim-
ulation period. Success is defined as the ability of the system to
supply water from surface and groundwater sources without ex-
ceeding the maximum allowable level of groundwater withdrawal.
So, failure can be defined as any overdraft event from the ground-
water to supply demands.

Resiliency index (Res) describes how quickly a system can
recover from failure. If S denotes the set of satisfactory states
and F the set of unsatisfactory states, then in the long run the num-
ber of transitions from satisfactory states in S to unsatisfactory
states in F must be equal to the number of transactions in the re-
verse direction. Resilience (β) is defined as the conditional prob-
ability of a recovery from the failure set in a single time step
(Hashimoto et al. 1982)

β ¼ Prob½Xtþ1 ∈ SjXt ∈ F� ð22Þ
Vulnerability index (Vul) is a measure that shows the likely

damage to the system during a failure event and refers to the likely
magnitude of a failure, if one occurs. Although Goharian et al.
(2015) suggested including new factors to estimate the vulnerabil-
ity of water systems, this paper just used the magnitude of failure
(i.e., severity), which is the classical definition of vulnerability
(Hashimoto et al. 1982)

Vul ¼ VFail

TDD
ð23Þ

where VFail = water shortage, which should be supplied with
the excess groundwater withdrawal; and TDD = total water
demand.

Results

Uncertainty Analysis of the HBV Model Parameters

Using DREAM, multiple chains were simultaneously run and the
orientations of the parameters’ distributions were automatically
tuned during the evolution to the posterior distributions. For each
set of the parameters, the HBV model (linked with the MCMC
algorithm using a MATLAB interface) was run to simulate

streamflow. For each watershed, the model parameters’ PDFs were
constructed. The upper and lower ranges of the parameters were
then revised by investigating their domain of variations using
the resultant PDFs. Hence, for some parameters the initial ranges
are narrowed to set the proper lower or upper limits. Table 2 reports
the model parameters’ means, standard deviations, and revised
ranges. By comparing the parameter ranges in Table 2 and the ini-
tial values reported in Table 1, it can be concluded that the ranges of
the model parameters need to be revised for each individual
watershed.

Samples of generated parameters interpreted the behavior of the
parameters’ distribution. For each watershed, 10,000 sets of param-
eters were generated within the revised ranges. The PDFs for
parameters were built using parameters that met the MCMC algo-
rithm convergence criteria. Fig. 5 is an example of the behavior of
parameters’ distribution, in which PDFs of three parameters of
HBV model including K1, DD, and K2 are illustrated for Karaj,
Lar, and Latyan watersheds, respectively.

Based on the results, PDFs are well defined regarding the re-
vised values of parameters. It reveals that the historical observed
streamflow includes sufficient information to estimate the model
parameters. The histogram of K1 concentrates most of the prob-
ability mass at the lower bound of the parameter. This behavior
of the histogram (highest probability mass either at the upper or
lower bounds) could be attributed to the deficiencies in the model
structure or errors in the input data. It even may raise the
question of whether the parameter is actually representing the
behavior of the watershed (Vrugt et al. 2008). The HBV model
estimates runoff based on the reservoir concept: two conceptual
reservoirs, one above the other. The upper reservoir is used to
model the near-surface flow, while the lower one simulates the
base flow. Recession coefficient K1 represents the response func-
tion of the upper reservoir. Therefore, the observed streamflow, as
the model input, directly affects the estimation of K1 and its
histogram.

In order to make a visual depiction of the distribution of the
HBV model parameters and assess the location, dispersion, and
symmetry or skewness of sets of parameters, box plots are pre-
sented in Fig. 6. Box plots compare the features in parameter sets
for the study of watersheds.

Furthermore, box plots depict the range and distribution char-
acteristics of the same parameter in different watersheds that could
otherwise be quite different (e.g., parameter FC). Some of the
parameters are well defined, while others have considerable uncer-
tainty. Comparing the box plots in Fig. 6 demonstrates that
although some of the parameters are equally distributed in their
quartiles, parameters that are distributed with significant skewness
tend to their lower or upper values. This considerable difference in

Table 2. Posterior Mean and Standard Deviation of the HBV Model Parameters, and the Revised Ranges of the Parameters, for Karaj, Lar, and Latyan
Watersheds

Watershed Parameter
DD

(mm °C−1 day−1)
FC
(mm) BETA C

K0
(day−1)

L
(mm)

K1
(day−1)

K2
(day−1)

Kp
(mm day−1)

PWP
(mm)

Karaj Mean 3.95 554.72 6.18 0.10 0.06 5.98 0.03 0.0024 0.0173 85.94
Standard deviation 1.73 76.21 0.91 0.06 0.03 2.24 0.02 0.0013 0.0714 9.07

Range 1–6.9 450–700 5–8 0.01–0.2 0.01–0.1 2–10 0.001–0.1 0.001–0.005 0.04–0.1 70–100
Lar Mean 2.95 453.04 5.10 0.19 0.01 9.54 0.0012 0.0027 0.0952 83.17

Standard deviation 1.01 2.97 0.08 0.01 0.0007 0.4 0.0002 0.0002 0.0042 8.33
Range 1–6.8 450–470 5–5.4 0.13–0.2 0.01–0.014 8–10 0.001–0.002 0.001–0.0036 0.08–0.1 70–100

Latyan Mean 4.34 465.61 5.19 0.18 0.05 6.39 0.0780 0.0039 0.0551 94.70
Standard deviation 1.70 7.79 0.09 0.01 0.025 2.27 0.0207 0.0071 0.0151 5.83

Range 1–7 450–500 5–5.5 0.14–0.2 0.01–0.1 2–10 0.001–0.1 0.001–0.008 0.04–0.1 70–100
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the parameters’ distribution reveals the necessity of uncertainty
analysis for the same rainfall-runoff model in different watersheds
within a greater region.

Using the outputs, values of the HBV model’s parameters that
lead to the model maximum simulation performance were obtained
for each watershed. From the large number of the generated ensem-
bles, the 30 best time series with the highest values of common
mean correlation (CMC) were selected for further analysis. An
average of the simulation performance for the selected time series
for each watershed is presented in Table 3.

Fig. 7 shows the domain of variation in HBV model parameters
that leads to the best simulation performance for Karaj watershed,
as an example. The horizontal axes in this figure correspond
to the 30 selected best simulated streamflow ensembles. This figure
shows that high simulation performance for the watershed rainfall-
runoff model can be obtained by a range of values for the

parameters rather than by an individual set of values. For some
of the parameters, the range of this variation is considerably wide.

Fig. 8 compares the simulated streamflow for the watersheds
with the observed runoff. The simulated streamflow in this figure
is obtained using the best set of the model parameters to run the
hydrologic model.

Uncertain Performance Assessment of Water Supply
System

Ensemble predictions add additional information to the determin-
istic simulation. Selected time series of runoffs generate a bound for
possible uncertain streamflow for each watershed. It is important to
consider the inflows within these bounds, instead of a single deter-
ministic streamflow, as possible input values to the WSS model. To
facilitate the time run of the hydrologic and the system models and
to be able to properly map the uncertainty bounds, in addition to the
30 selected best time series, maximum and minimum streamflow
time series are built using the generated ensembles (the maximum
time series is defined at each time step as the highest streamflow
values of the ensembles; the same was done for minimum time
series, but with the lowest streamflow values of the ensembles
in each time step).

The hydrologic model is initialized (warmed up) based on the
observed information for a few days prior to the start of simulation.
Therefore, the observed reservoir storage for each reservoir at the
beginning of simulation is selected as the initial condition of the
reservoir. Uncertain streamflow time series are fed to the SD model
of the WSS. By running the system simulation model, water is al-
located from different sources based on the governing rules and
policies to minimize the shortage in the system. As a result,
water-level fluctuations and storage changes in reservoirs can be
simulated by the SD model for the modeling time horizon. The
ranges of monthly average storage for each reservoir based on
the uncertain reservoir inflow time series are presented in Fig. 9.
Herein, observed values (shown by solid lines) are estimated based
on the simulation of the SD model using observed inflows to the
reservoirs, and simulation values show the simulation by the SD
model using the sets of the simulated streamflow for watersheds
by the HBV model (shown by the dashed line).

This figure depicts how operation of each of these reservoirs is
sensitive to the uncertain reservoir inflows associated with hydro-
logic model parameters’ uncertainty. For example, for the Lar and
Latyan reservoirs, the best simulated streamflow scenarios re-
present similar reservoir storage as the observed one. However,
the wide bound of changes in the reservoir storage in Lar Reservoir
shows that if the hydrologic model lacks adequate information
about the behavior and characteristics of the catchment, then un-
certainty will be largely propagated in WSS simulation. This sig-
nificantly affects the operation of the system in different months.
The propagation of hydrologic model parameters’ uncertainty in
simulation of reservoir storage in the Latyan Reservoir is less ef-
fected, although the reservoir size is much smaller than Lar and
Karaj. For the Karaj and Latyan reservoirs, the simulation of
WSS for the observed inflows tends to present water stored in res-
ervoirs closer to the upper bound of the uncertainty range, while for
the Lar Reservoir it almost represents the mean reservoir storage.
Generally speaking, the propagation of uncertainty, and therefore
the size of uncertainty bounds, in reservoir storage is directly as-
sociated with the size of the reservoir. Moreover, in smaller reser-
voirs the observed and deterministic simulations tend toward the
upper bound of the uncertainty range and as the size of reservoir
increases these values move toward the mean values.
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Fig. 5. Probability distributions (histograms) of the HBV model para-
meters for the three watersheds: parameter K1 for Karaj watershed,
parameter DD for Latyan watershed, and parameter K2 for Lar
watershed
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Further, to analyze the performance of the WSS system, the reli-
ability, vulnerability, and resiliency measures are estimated. The
output is a range of possible values of these metrics (except resil-
iency) over 5 years of simulation as shown in Fig. 10.

Based on Fig. 10(a), WSS reliability varies between 0.2 and 1
(at the end of a 5-year period). Any change in reliability could affect
making suitable decisions for future planning and operation of
Tehran’s WSS. A wide range of reliability values emphasizes the
sensitivity of the system’s performance to the uncertainties of
streamflow simulations and inflows to the reservoirs. Therefore,

it is necessary to take into account the uncertainty analysis of stream-
flow simulations during the decision-making process, rather than
relying on individual deterministic simulations. For Tehran’s
WSS, uncertainty in the system’s reliability is considerably high.
Ignoring the sources of uncertainty in decision making for the
WSS will cause serious errors in operation and planning stages
of the system. While the system faces many failure events and has
a wide range of reliability, the variations in vulnerability are negli-
gible (between 0.0 and 0.16) [Fig. 10(b)]. An interpretation of the
values for these two metrics is that the number of failures in the
system can be high, while the degree and magnitude of failures
are low. Although the system can fail over many days, the shortage
ofwater for these failures is not significant based on the vulnerability
measure. Considering a high and a low range of variations for reli-
ability and vulnerability, respectively, proves that a single-criterion
performance assessment cannot be a reliable procedure for decision
making of WSSs. The resiliency graph has not been shown here be-
cause it is understood from the reliability measure that no failure
events have been seen for the observed and high streamflow ensem-
ble time series. Therefore, resiliency cannot be estimated for these
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Fig. 6. Marginal posterior distributions of the HBV model parameters from the estimation of rainfall-runoff model parameters for the study
watersheds

Table 3. Mean Simulation Performance of the HBV Model for the 30
Selected Best Runoff Time Series

Evaluation criteria

Watershed

Karaj Lar Latyan

MBE −0.14 −0.16 −0.22
MSE (m3=s) 1.01 2.1 1.3
CMC 0.8 0.85 0.77
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scenarios. However, the results show that the lower bound of the
resiliency measure at the end of the 5-year period is 0.016. This
shows that if streamflow is underestimated by the hydrologic model
or the inflows decrease in the system, Tehran’s WSS will show a
nonresilient behavior and the recovery periods in the system would
be long. This verifies the importance of multicriteria decision mak-
ing in management of water resources systems under uncertain
hydrologic responses and reservoir inflows.

Summary and Conclusion

An integrated scheme is proposed for the performance assessment
of water supply systems. Tehran’s WSS was selected as the realistic
case study. The study region includes three watersheds. The
rainfall-runoff process in the watersheds was simulated using the
HBV hydrologic model. The effects of model parameters’ uncer-
tainty on system performance were then evaluated. A Markov chain

Fig. 7. Range of variation for the HBV model parameters’ values that resulted in generating time series with the highest hydrologic performance
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(a)

(b)

(c)

Fig. 8. Comparison of the observed and simulated streamflow for watersheds: (a) Karaj; (b) Lar; (c) Latyan
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Fig. 9. Monthly average storage of water in different reservoirs (solid line shows observed and dashed line shows the best simulation): (a) Karaj;
(b) Lar; (c) Latyan
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shows the best simulation): (a) reliability; (b) vulnerability
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Monte Carlo–based algorithm was used for this purpose. A system
dynamics approach was employed to model interrelationships and
complexities in the water supply system. The STELLA software was
used to establish the system dynamics model of the system. Three
metrics of reliability, vulnerability, and resiliency were used for
evaluation of the system performance.

Based on the results, acceptable simulation performance for a
hydrologic model can be obtained using a set of probable values
for the model parameters rather than individual values. The results
of uncertainty analysis of the model parameters indicate that for a
watershed some parameters could be well defined, while others
may have considerable uncertainty.

The importance of studying the propagation of hydrologic
model parameters’ uncertainty is often underrepresented in water
resources system analysis. Most studies use a calibrated hydrologic
model to produce the inflows to the reservoirs and a WSS to assess
the performance of them. However, this research shows that the
uncertainty associated with the model parameters and slight
changes in their values can often lead to a great change in the per-
formance of a water system, and therefore affect the operation and
management of the system. In general, the uncertainty propagation
has greater effects on larger reservoirs and systems. The results of
this study indicate that system performance could be considerably
different when uncertainties in streamflow simulation are taken into
account, in comparison with the deterministic analysis of the
system. For example, while the number of failure events in the sys-
tem can be highly increased by changes in the hydrologic model
parameters’ values, water shortage in the system is less sensitive to
the changes. Also, while the deterministic simulation offers that
Tehran’s WSS is resilient, the uncertainty analysis represents long
recovery periods for the system, and therefore suggests this system
has nonresilient behavior.

The key findings emphasize the importance of incorporating
the uncertainty analysis in modeling WSSs and multicriteria per-
formance assessment of the water supply systems. This will help
water managers and stakeholders make affirmative decisions
based on the informative results and probable performances
of the system. Finally, this study highlights the need for better
quality hydrologic modeling, using stochastic and uncertainty
simulation of a water system, and multiple performance criteria
for assessment of the system performance during uncertain
conditions.
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