ESM 121

Water Science and Management

Environmental Water Demand

Samuel Sandoval Solis, PhD Freddi Bruschke, Ph.D

Contents

Overview	2
Background	4
Environmental Flows	7
Instream Flows	8
Relevant Ecosystems	10
Types of Flows	12
Natural Flow Regime	15
Instream Flows: "A very short story"	18
Functional Flows Approach	18
Natural flow regime and functional flows	21
Learning Activity: Calculate instream flows	22
The results for this activity should include	22
Resources	23
Instructions	24
Setting up the Functional Flows Interface	24
Analyzing reference hydrographs	33
Determining instream flow recommendations	37

Overview

Imagine the land around you before people started changing it: no houses, no farms, no roads, no cities. Before people starting removing water from rivers (and putting some back afterwards). How did the rivers flow across the land? *Environmental flows* are the amounts of water a river or stream needs to sustain its various ecosystems, including variability needed at different times of the year. Both high and low flows play an important role in the physical development of rivers as well as the plants and animals that live in river biomes.

Before diving into the details of characterizing *Environmental Flows*, first let's take a look at this <u>video</u> that explains the idea of environmental flows (actually *instream flows*, you will learn later). Take note of the terminology introduced.

By the end of this section you should be able to describe environmental water needs--instream flows. You will learn basic concepts related to instream flows (*environmental flows* versus *instream flows, river ecosystems, components of instream flows, natural flow regimes*). With this foundation, we will compare some methods for determining environmental water needs (*A very short story of instream flows*).

Next you will apply the *Functional Flows Approach* to a river system using data (functional flow metrics) from a river data repository called *eflows*. You will explore these data using a spreadsheet interface in Google Sheets (*Functional Flows Interface*). Finally, you will characterize the instream flows for the Pajaro River using all available water year data, as well as for a typical wet, moderate, and dry year.

Don't worry about remembering all of this right now! But do keep in mind this roadmap as you progress through the section.

Figure 1 - Overall section to estimate instream flows

Context of Environmental Flows

"How much water does the environment need?" Seems like a simple question at first glance. You might imagine the answer is a single number, like 300 cubic feet per second. As you will find in the next few sections, this question gets rather complicated as we identify the ecosystem that we want to protect and all the flow components needed to keep the environment thriving. Often environmental flows are an afterthought when estimating water demands. But not here. In our case study of the Pajaro River Valley we will begin with estimating how much water is needed to sustain the river ecosystems.

There is a misconception that the environment is another user waiting in line for water from the river basin. However, the reality is that **the environment is the water provider for all other water uses**. You name it; **all water on Earth comes from the environment and all users depend on it**. Every drop of water can be traced back to the environment: water in rivers, lakes and reservoirs comes from rain and snow; groundwater stored in aquifers comes from rivers (and rain and snow); recycled city water originally came from the water supply (rivers and aquifers); desalinated water comes from the ocean; fog comes from atmospheric moisture. Think about this: all water comes from the environment. Remember the water cycle you learned when you were young? If you could read the tiny print at the bottom of this figure, it says "this diagram shows the Earth's natural water cycle, omitting the significant impacts of human influence."

The water cycle (USGS)

Unfortunately there are two typical problems in the professional water management practice. First, we do not think of environmental water as another user and if it is considered as another user, the thought is what is the minimum amount of water that should be left over once humans have taken our portion. Traditionally (and legally under the National Environmental Policy Act) Environmental Impact Reports (EIRs) estimate impact or damage to the environment from a given project. EIRs may propose some restoration or mitigation strategies, but the focus is on documenting impact, not providing water to the environment as an equal user. In California, there are five legal instruments to obtain a water right for the environment for protecting or restoring riparian and freshwater ecosystems at risk: (1) the California Wild and Scenic Rivers Act in 1972, (2) the Endangered Species Act (ESA) in 1973, (3) Section 5937 of Fish and Game Code, (4) through a biological opinion under the Federal Energy Regulation Commission (FERC) relicensing process for hydropower dams, and (5) Public Trust Doctrine. Second, planners think about environmental needs at the end of the analysis, after estimating how much water humans need. That means the environmental water analysis becomes an exercise in how to distribute the leftover water rather than determining actual environmental need. As a result of these two common planning mistakes, most rivers throughout the world are currently degraded.

In our analysis, we will avoid these two very common traps by estimating environmental water water needs upfront.

Figure 2. Overlook of Monterey bay from Pajaro Valley

Environmental Flows

In order to determine environmental water needs let's start by defining environmental flows and why these flows are important. When we refer to **environmental flows**, we mean "the amount of water needed to sustain river functions and services while maintaining human water demands" (Pof et al. 1997¹). While the name may not be intuitive, environmental flows consider both water for the environment and human use.

Why do we need to protect water to the environment? You can answer this question from two different perspectives. First, from an environmental justice perspective, the environment provides

¹ Poff N, LeRoy J, Allan D, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The natural flow regime. BioScience 47(11): 769–784

water to all users, so it is fair to maintain enough water in rivers to sustain all species and organisms that depend on it. It is the right thing to do. The better we take care of mother nature, the better mother nature will take care of us, as she has done for millennia. Second, from an utilitarian point of view, the environment provides many benefits that we value as society, called ecosystem services. Ecosystem services are things rivers naturally do that we value as society. For example, rivers recharge aquifers whose water we can pump out and use. Rivers provide water to irrigate crops for food. Rivers transport nutrients that are important to fertilize valley soils and sustain fisheries at the coast. This <u>video</u> explains further about environmental flows.

Environmental Flows

"A flow regime (quantity, quality and timing) to <u>sustain natural river functions and</u> <u>services while meeting human water demands</u>" (*Poff et al. 1997*)

- The <u>flow regime</u> is a primary determinant of the structure and function of river ecosystems
- Hydrologic alteration by human activities has impaired river ecosystems on a global scale
- A (naturally) variable flow regime, rather than a minimum flow, is needed
- Current scientific understanding and pilot releases support re-design of systems operation to provide environmental flows

Figure 3 - Definition of environmental flows

Instream Flows

While environmental flows consider both human and environmental needs, we are also interested

in isolating just those flows that meet environmental needs which are called *instream flows*.

Instream flows are flows in rivers that sustain adequate conditions of the river ecosystem.

As ecosystem needs change throughout the year, instream flows are a set of variable flow rates (both within seasons and among years) that maintain adequate water quantity, quality, and timing necessary to support physical habitat and river connectivity. The specific instream flow characteristics for physical habitat and river connectivity:

- Physical habitat: water depth, water velocity, sediment transport and deposition, channel form, and
- River connectivity: longitudinally, from the headwaters to the ocean, horizontally from river bank to river bank, and vertically for surface water and groundwater interactions.

Instream flows are necessary to sustain freshwater and riparian ecosystems. This <u>video</u> explains the key aspects of instream flows.

Instream Flows

"A defined *flow regime*, associated physical habitat, connectivity and water quality able to sustain ecosystem functions for protecting or restoring freshwater and riparian ecosystems"

A <u>flow regime</u> refers to water: magnitude, timing, seasonality and inter-annual variability

Figure 4 - Definition of instream flows

Check your Understanding

Select the adequate statement. The main difference between environmental flows and instream flows are that:

What is the main difference between the concepts of environmental flows and instream flows?

() Instream flows includes human and environmental water needs, and environmental flows only include environmental water needs

() Environmental flows includes human and environmental water needs, and instream flow only include environmental water needs

() There is no difference, they refer to the same concept

Relevant Ecosystems

While the concept of instream flows is clear ("those flows in rivers dedicated to sustain adequate conditions of the river ecosystem that depend on it"), the questions are: **How can we estimate the amount of water needed to sustain the environment that lives in the river and depend on it?** And, **What are the main components for estimating instream flows?** In order to respond to these questions, first let's start by identifying the ecosystems that depend on rivers, select those ecosystems that are more relevant, and describe the flow characteristics to sustain these ecosystems.

What is an ecosystem? An ecosystem is "*a community of living organisms in conjunction with the nonliving components of their environment, interacting as a system*". **Typically, we also refer to the ecosystem as "***the environment***" (Figure 5). All ecosystems on Earth depend on** water flowing in rivers and groundwater from aquifers. Specifically, we can identify three ecosystems that directly depend on how much water is in a river: freshwater, riparian, and terrestrial ecosystems. This <u>video</u> describes each of these ecosystems in detail.

Mammals (e.g. Beavers) Flies and bug Aquatic Flora Freshwater Ecosystems -Fish communities (What lives in the river) Phytoplankton, Zooplankton Invertebrates (Benthic Macroinv.) -Plant Communities **Riparian Ecosystems** Invertebrates/ Reptiles/Amphibians (What lives along the river) Birds Mammals e high water level Terrestrial Ecosystems Ordinary high water mark Primary producers (What lives around the river) Forest

Relevant Ecosystems - Instream

Figure 5. Relevant ecosystem for instream flows

Check your Understanding

Select the relevant ecosystems that directly depend on the amount of water flowing in the river:

- () freshwater ecosystem
- () riparian ecosystem
- () terrestrial ecosystem

Instream Flow Components

Now that we have identified the relevant ecosystems that instream flows support, let's identify the different building blocks of instream flows (Figure 6). Think of these elements as the main ingredients in the recipe:

- Water quantity--river ecosystems require some minimum volume of water, but also need seasonal variability and inter-annual variability of flow. In other words, the river ecosystems need different water quantities each season of the year and from year-to-year. Both can be estimated by quantifying the magnitude, timing, frequency, duration, and rate of change of ecologically relevant flow events (also called *functional flow components*)..
- Water quality--river ecosystems need good water quality to adequately sustain all the organisms that live within the water column (inside the river) and along the riparian corridor (along the banks). The native species in a given river evolved based on a particular water quality regime. This means the seasonal and inter-annual variations of particular water quality parameters (like temperature or suspended sediment content).
- **Physical habitat**--river ecosystems need certain physical conditions to thrive. Organisms in a particular river system evolved to take advantage of the river channel shape and type (geomorphology). They have adapted to this form to survive. Perhaps a species grows on a point bar in the middle of a braided stream. In some streams there might be pools where certain organisms live during a stage of their lifecycle or backwater channels where they can hide from predators. If a levee is built or the river channel is straightened, then some of this complexity is lost. As a result, the health of the ecosystem is threatened.

• River connectivity--every river has different degrees of connectivity, but all of them are connected with other water bodies in one way or another. A perennial river (a river that naturally contains water all year) has three degrees of connectivity: (1) longitudinally, from its headwaters to the ocean, (2) transversely from bank to bank, during high flows both sides of the river are connected, and (3) vertically, the river is connected with the groundwater aquifer beneath. At different times of the year the river may be gaining (baseflow enters river from groundwater) or losing (the river recharges the groundwater). Typically, the mainstem of a river is perennial, however in arid regions especially, you find ephemeral rivers (rivers that naturally contain water only sometimes during the year, generally during the rainy season). Ephemeral rivers exhibit all three degrees of connectivity only during certain times of the year.

The following video provide an explanation of the previous concepts.

Instream Flows

Figure 6. Instream flows components

Check your Understanding

In terms of water quantity, a given river ecosystem needs:

() the same amount of water throughout the year all years

() a seasonal variation of streamflow, but the same every year

() a seasonal and interannual variation of streamflow (yes)

In terms of water quality, a given river ecosystem needs:

() no water quality at all, the organisms living in river are not dependent on water quality, only water quality

() A variation of water quality constituents according to the natural variation

In terms of physical habitat, a given river ecosystem needs:

() a simple physical habitat, like an irrigation canal, with no variation of the form, slope or shape throughout its mainstem

() a complex physical habitat like a meandering pool-riffle river, that has a changing slope and channel type throughout the basin

In terms of connectivity, a given river ecosystem needs:

() longitudinal connectivity from its headwaters to the river outlet,

() vertical connectivity with aquifers that a river passes through

() transversal connectivity with its banks, for bringing nutrients into the river, moving sediment and reshaping the channel form

Natural Flow Regime

In the previous sections different concepts have been introduced such as environmental and instream flows. Another key concept is the natural flow regime. A flow regime is the statistical description of the seasonal and inter-annual (among different years) variation of flow of a river. The natural flow regime is a time tested flow regime that supports the needs of native riparian and freshwater ecosystems. For more details, read Poff et al. (1997) for a thorough description of the natural flow regime. For example, the figure below is composed of five time series, the 10th, 25th, 50th (median), 75th, and 90th flow percentiles of every day. This is one way that a flow regime can be described. Take a look at the median streamflow (Black line), it changes within a year, meaning there is a seasonal change in climate within a year and the streamflow responds accordingly to those climate variations. The interannual variability can be seen in the difference between the 10th and the 90th percentile time series, there are parts of the year that the flow does not change that much among years (dry season, i.e. August to November), but there are other times that the streamflow changes mode dramatically between year, typically the rainy season (i.e. December to May).

Figure 7. A snowmelt and rainfall natural flow regime of California

The following <u>video</u> describes in more detail the concept of the natural flow regime and its significance.

Natural streamflow classes for California

The natural flow regime can be calculated using streamflow data collected in watersheds with limited or no human disturbance. The two figures below show the location and the flow regime of the nine natural streamflow classes estimated for the state of California (Lane et al. 2017 and 2018). They can be explored at eflows.ucdavis.edu.

Figure 8. Nine natural streamflow classes of California

Now that you understand the concept of natural flow regime, take a look at the following <u>video</u> where the nine natural streamflow classes of California are explained.

Check your Understanding

Select the assumptions that natural flow regime consider:

() Mimicking the natural hydrology to which species are adapted will provide ecological benefit even if the driving mechanisms at work are not explicitly understood

() It offers a time-tested recipe for river restoration and protection.

() The needs of all river species are met over the course of seasons, years, decades and centuries by the natural variations of the river flow.

Instream Flows: "A very short story"

Now that we have a good understanding of the concepts of environmental flows, instream flows and natural flow regime, the following <u>video</u> provides a very brief description of some of the instream flow methods developed in the last four decades. (Figure 9).

Instream Flows, a very short history

Natural flow regime Minimum flows (Tennant 1976) Seasonally varying minimum flows Natural flows paradigm (Poff et al. 1997) Percent of flow (POF) (Richter et al. 2012) Functional flows (Escobar-Arias & Pasternack 2010, Yarnell et al. 2015; Lane et al. 2017)

But what is 'functional'? In heavily constrained systems, we really want to know the minimum water needed to sustain critical ecosystem functions

Figure 9. A comparison of different instream flow regime methods

The following figure shows your overall progress with respect to the Environmental water needs section.

Functional Flows Approach

In basins where there is already human alteration, there is a method to determine instream flows called **Functional Flows Approach** that estimates ecological relevant flows to sustain the different types of flows (quantity, quality, physical habitat and connectivity) needed to adequately sustain a healthy river ecosystem (Arias and Pasternack 2010, Yarnell et al. 2015, Yarnell et al. 2020). **Functional flows** are those aspects of the flow regime that directly relate to ecological, geomorphic, or biogeochemical processes in a river (see figure below). In other words, functional flows support foundational processes related with the ecology of the river (freshwater and riparian ecosystems), the physical habitat (geomorphology), water quality, connectivity and in general the well-being of the biological communities.

Figure 10. A relationship of flow and the ecosystem functions that flows provide to living organisms (biotic) and non-living organism (abiotic)

The functional flows approach is based on five seasonally varying **flow components** that provide ecological functions that sustain the entire river ecosystem while still leaving room for water diversion for human purposes (Figure 11).

- 1. *Fall pulse flow*, or the first major storm event following the dry season. These flows represent the transition from dry to wet season and serve important functions, such as moving nutrients downstream, improving streamflow water quality, and signaling species to migrate or spawn.
- 2. *Wet-season base flow*, which supports native species that migrate through and overwinter in streams.
- 3. *Peak magnitude flows*, which transport a significant portion of sediment load, inundate floodplains, and maintain and restructure river corridors.

- 4. *Spring recession flows*, which represent the transition from high to low flows, provide reproductive and migratory cues, and redistribute sediment.
- 5. *Dry-season low flow*, which support native species during the dry-season period when water quality and quantity limit habitat suitability

Figure 11. Functional flow components

The following <u>video</u> explains the Functional Flow Approach, each functional flow component and why they are important for sustaining healthy freshwater and riparian ecosystems.

Natural flow regime and functional flows

The following <u>video</u> connects the nine natural streamflow classes for the state of California with the functional flows approach, specifically relating the natural flow regime with the determination of functional flow components and metrics for each of the classes and ultimately each river reach in the State of California. This video shows how the combination of determining the natural flow regime and the functional flows are key milestones for sustaining healthy freshwater and riparian ecosystems.

The following figure shows your overall progress with respect to the Environmental water needs section.

Learning Activity: Calculate instream flows

To complete this activity, students will obtain and examine how much water is needed to sustain aquatic and riparian ecosystem using functional flow metrics readily available for Pajaro River. Students will also compare three functional flow regimes for dry, moderate and wet conditions and discuss their functional flow components. Specifically, students will determine instream flows for the Pajaro River by:

- obtaining functional metrics available for the state of California,
- exploring the different functional flow components
- determining and comparing functional flow regimes for different water year types: all, dry, moderate and wet, and
- integrating these results into a functional flow regime and discussing the environmental and human benefits associated with the recommended flow regimes

The progress on this activity is shown in the figure below.

The results for this activity should include

- Two charts showing the reference hydrograph with units and dimensionless
- A description of the natural flow regime of of Pajaro River including the seasonal and interannual variability
- The *Recommended Instream Flows* table and a brief description of each recommended instream flows
- One chart showing the monthly volumes of the recommended instream flows for: all, dry, moderate and wet water years.
- One chart showing the recommended daily instream flows where the functional flow components are shown conceptual and estimated for: dry, moderate and wet water years.
- Discussion on the reasoning for considering environmental water demands (*instream flows*) and what are the benefits for the river ecosystem and the society. Hint: you can frame your response in terms of ecosystem functions and ecosystem services.

Resources

- Google sheet template Environmental Demand Functional Flow Interface
- Google document <u>tutorial</u> with detailed instructions (see document below)
- Exercise submission <u>template</u>
- <u>California Natural Flows Database</u>
- <u>California Environmental Flows Framework</u>

- Functional Flows Calculator
- <u>Atmospheric rivers</u>

Instructions

- 1. Set up the functional flows interface. Follow the instruction from page 26 to 36
- 2. Analyze reference hydrographs. Follow up the instructions from page 36 to 39
- 3. Determine instream flow recommendations. Follow the instructions from page 39 to 53

Summary Questions

- 1. What is the natural flow of Pajaro River and how flashy is its natural flow regime?
- 2. Estimate the instream flow by using the functional flows approach and how large or small are the recommended instream flows in comparison with the natural flows?

Detailed Instructions

Setting up the Functional Flows Interface

Go the California Natural Flows Database webpage (Figure 11)

flow alteration is an important first step in improving the management of California's rivers and streams for human and ecosystem benefits. Read more about how the partners in this project modeled natural flows in all the streams and rivers of California.

Learn More

from an intuitive graphical user interface.

View Map

Figure 11

estimated flow rates, and download flow data

documentation and code samples in R, Python, and JavaScript.

Read Documentation

Click on "Explore Data", a map like figure 12 should appear.

Figure 12

Now, zoom in Monterey Bay by using the scroll wheel (Figure 13).

Figure 13

Click on the river outlet of Pajaro Valley as shown in Figure 14, then click on the right arrow below the monthly hydrograph.

Figure 14

This will bring a screen with the estimated functional flows for the selected reach (Figure 15). Take you time in this window to look at the functional flow metrics for different functional flow components (explore the dropdown menu of *Flow Component*). Also, notice that these metrics have been calculated for all, dry, moderate and wet water year types. Cool! A group of scientists worked very hard in the <u>California Environmental Flows Framework</u> project to have all these estimations available for everyone in California!

Figure 15

Then, click on the "+" sign in the lower right corner of the results window to add this reach into the queue (Figure 15). Make sure that the stream reach ID that you are selecting is **17665747** (see Figure 16). Click on the "Download FFM data" button in the lower right corner. A dialogue box should come asking you for the folder where you want to save the file. The default name is "ffm 17665747.csv"

Figure 16

Open the file (see Figure 17). As you can see, the downloaded data has all the functional flow metrics that you have already explored, even filtered by water year type, so you can build an instream flow regime.

x	Calibri	- 11 -		= ab	General	- 🕞 Cor	ditional For	matting -	P Insert	- Σ-	<mark>4</mark> ▼ -
<u> </u>	BIU	• A A		= = ·	\$ - %	, 📅 Forr	mat as Table	•	- Polete		- م -
ste 💉	🗉 • 🛛 💩	- <u>A</u> -	€≣ ₹≣	89	00. 0. . 0.€ 00.	😨 Cell	Styles *		📰 Format	- 🧶 -	
board 🗔	For	nt r	Alignm	ient 🗔	Number	G.	Styles		Cells	Editi	ng
		× ✓	∫x con	nid							
A			D	E	-			L .		1 w	
	ffm	wyt	p10	p25	p50	p75	p90	unit	source	gage_id	obs
	ds_dur_w		127.47	170.93	210.89	240.72	273.71		model	Supc_iu	00.
	ds_dur_w		115.41	162.36	205.45	240	280.22		model		
		moderate	131.74	170.75	208	229	267.53		model		
	ds_dur_w		133.44	173.94	214.77	241.38	270.82		model		
	ds_mag_5			0.3	8.19	21.01	40.17 30.45		model model		
	ds_mag_5	ory moderate		0.28	3.61	15.75	30.45		model		
	ds_mag_5		0	2.27	12.18	31.35		cfs	model		
	ds_mag_s		0.98	6.25	15.06	38.97	89.26		model		
	ds_mag_9		0	2.44	8.73	18.66	42.78		model		
		moderate	0.85	6.05	14.44	40.84	90.12		model		
	ds_mag_9		9.31	19.38	53.95	105.99	183.94		model		
17665747		all	194.65	215.34	236.05	266		water yea			
17665747		dry	196 189.7	216 213.58	237 230.66	269.25 259.81		water yea			
17665747 17665747		moderate wet	189.7	213.58	230.66	259.81 261.31		water yea water yea			
17665747		all	26.87	68.22	174.78	442.99	1099.31		model		
17665747		dry	15.35	34.37	112.35	250.33	768.16		model		
17665747		moderate	28.19	72.63	178.01	445.11	1139.72	cfs	model		
17665747		wet	42.26	97.72	277.4	807.16	2107.44		model		
17665747		all	10.45	23.69	40.45	50.1		water yea			
17665747		dry	4.48	13	38.66	47.35		water yea			
17665747		moderate wet	11.79 12.5	29 24.5	40.7	51		water yea			
17665747 17665747		all	9959.33	24.5	31788.53	55448.59	64162.96	water yea	model		
17665747		all	1381.45	1786.86	5077.1	13534.64	20917.93		model		
17665747		all	5284.23	7172.43	15280.62	35250.68			model		
17665747	sp_dur	all	19.98	31.88	48.69	90.16	125.54	days	model		
17665747		dry	19	33.38	56	100.61	140.46		model		
17665747		moderate	19.4	31.62	47.9	90	126.08		model		
17665747		wet all	22.5 91.5	30.65	43.9	67.65 2222.71	98.55 5773.82		model model		
17665747 17665747		all dry	91.5	263.23	821.89 259.79	781.04	2157.9		model		
17665747		moderate	97.37	264.22	815.66	2175.01	5518.9		model		
17665747		wet	449.61	1179.84	3065.5		13672.4	cfs	model		
17665747		all	152.54	161.36	179	191.63		water yea	model		
17665747		dry	146	158.78	182	192.16		water yea			
17665747		moderate	148	159	176	181		water yea			
17665747		wet	162.5	174.5	179	192		water yea			
	wet_bfl_d wet_bfl_d		47.99 38	65.5 65	90.63 99.9	119.6 137	153.8 169.2		model model		
		moderate	42.38	64	90.63	103	136.15		model		
	wet_bfl_c		59	79.16	91.66	117.13	141.17		model		
	wet_bfl_r		1.46	7.85	19.89	38.91	61.43		model		
	wet_bfl_r		0	2.62	10.27	22.87	40.69		model		
		moderate	0.19	5.82	19.93	37.48	58.66		model		
	wet_bfl_r		6.56	20.75	67.08	134.15	264.11		model		
	wet_bfl_r wet_bfl_r		25.04 7.63	48.14	99.14 40.08	169.53 67.82	299.73 122.97		model model		~
		moderate	27.34	48.88	40.08	170.02	299.86		model		_
	wet bfl r		96.95	189.14	349.98	730.46	1094.81		model		
	wet_tim		50.5	72.36	77.83	96		water yea			
17665747	wet_tim	dry	25.97	38.66	70.22	102		water yea			
17665747		moderate	57.9	85.45	91.4	96.66		water yea			
17665747	wet_tim	wet	61.16	76.07	83.35	95.82	105.91	water yea	model		

Figure 17

Open the Google Sheet template Environmental Demand - Functional Flow Interface and make a copy in your google drive (File / Make a copy). Through this means, you will be able to modify it. Make sure you remember where you save it. Select the range of cell A2 to J56 (D2:H56) from the "ffm_17665747.csv" and copy them (Ctrl+C) (Figure 18). Go to the Template Environmental Demand file and paste them in the sheet Functional Flow Metrics cell A2:J56 (yellow cells in Figure 19).

🗄 ਙਾਟੇ-६+			©z-∓					'47.csv - Exc		
ile Hor	ne Inse	ert Draw	Page La	ayout F	ormulas	Data	Review \	liew Dev	eloper	Help
	Calibri	+ 11	- A A	= =	= **	ab c	General	-	.	
te	BIU	• = •	ð - A -	==	= •= •=	÷.	\$ - %	00. 00 .	Conditio	
board G		Font			Alignment	- 5	Numb	er 19	Formatti	ng • Sty
	_	Font			signilent	191	Numb	-en 13		50
	• = 2	× 🗸	<i>f</i> _x 176	65747						
A	В	с	D	E	F	G	н	1	J	
comid	ffm	wyt	p10	p25	p50	p75	p90	unit	source	gag
17665747	ds_dur_w	all	127	171	211	. 24	1 27	4 days	model	
17665747			0	0.306	8.2			2 cfs	model	
17665747			0.989	6.25	15.1	-		3 cfs	model	
17665747		all	195	215	236	26	-	B water ye		
17665747 17665747		all all	26.9 10.5	68.2	175 40.5	44 50		0 cfs 2 water ye	model	
17665747		all	9960	12000		5540			model	
17665747		all	5280	7170					model	
17665747		all	1380	1790	5080				model	
17665747		all	20	31.9	48.7	90	.2 12	6 days	model	
17665747		all	91.5	263	822	222	0 577	D cfs	model	
17665747		all	153	161	179	19		7 water ye		
17665747			48	65.5				4 days	model	
17665747			1.47	7.85	19.9			4 cfs	model	
17665747 17665747			25 50.5	48.1	99.1 77.8			D cfs	model	
17665747			115	162	205	24		7 water ye 0 davs	model	
		moderate		102				B days	model	
17665747			133	174	215	24		1 days	model	
17665747			0	0	3.62	15.	.8 30.	5 cfs	model	
17665747			0	0.285	9.07	2	1 39.	6 cfs	model	
17665747			0	2.28	12.2			7 cfs	model	
17665747			0	2.44	8.73	18		B cfs	model	
		moderate		6.06	14.4			1 cfs	model	
17665747			9.32	19.4	54			4 cfs	model	
17665747 17665747		dry moderate	196 190	216 214	237			2 water ye		
17665747		wet	190	214	231			8 water ye 6 water ye		
17665747		dry	15.4	34.4				B cfs	model	
17665747		moderate	28.2	72.6				D cfs	model	
17665747		wet	42.3	97.7	277	80	7 211	0 cfs	model	
17665747	fa_tim	dry	4.48	13	38.7	47.	.4 6	2 water ye	a model	
17665747		moderate	11.8	29	40.7			2 water ye		
17665747		wet	12.5	24.5				2 water ye		
17665747		dry	19	33.4	56			D days	model	
17665747 17665747		moderate wet	19.4 22.5	31.6 30.6	47.9 43.9			5 days 5 days	model model	
17665747		dry	22.5	30.6	43.9			D cfs	model	
17665747		moderate	97.4	264	816			0 cfs	model	
17665747		wet	450	1180	3070				model	
17665747		dry	146	159	182	19	2 22	5 water ye	a model	
17665747		moderate	148	159	176			5 water ye		
17665747		wet	162	174	179	19		2 water ye		
17665747			38	65	99.9			9 days	model	
		moderate		64	90.6			6 days	model	
17665747			59	79.2	91.7			1 days 7 ofc	model	
17665747		moderate	0.195	2.63	10.3 19.9			7 cfs 7 cfs	model model	
17665747			6.57	20.8				4 cfs	model	
17665747			7.63	17.3	40.1			3 cfs	model	
17665747			27.3	48.9	100			D cfs	model	
17665747			97	189	350	73	0 109	D cfs	model	
17665747			26	38.7	70.2			1 water ye		
		moderate		85.5				3 water ye		
17665747	wet_tim	wet	61.2	76.1	83.3	95.	.8 10	6 water ye	model	1

Figure 18

		v Insert Format				Last ed		0	<u>ک</u> س	
ĸ	-0-1	00% ▼ \$ % .	0, .00, 123▼	Default (Ca	• 1	1 👻	BI	<u>-</u>	. ⊞	23 ×
8	- <i>fx</i>	В	С	D	E	F	0	н		J
1							G		1	
2	comid 17665747	ffm ds_dur_ws	wyt all	p10 127	p25 171	p50 211	p75 241	p90	unit days	source model
3		ds_mag_50	all	0	0.306	8.2	241	40.2		model
4		ds_mag_90	all	0.989	6.25	15.1	39	89.3		model
5	17665747	ds_tim	all	195	215	236	266	298	water yea	model
6	17665747		all	26.9	68.2	175	443	1100		model
7 8	17665747		all	10.5	23.7	40.5	50.1		water yea	
° 9	17665747 17665747		all	9960 5280	12000 7170	31800 15300	55400 35300	64200 44400		model model
10	17665747		all	1380	1790	5080	13500	20900		model
11	17665747		all	20	31.9	48.7	90.2		days	model
12	17665747		all	91.5	263	822	2220	5770		model
13	17665747		all	153	161	179	192	217	water yea	
14		wet_bfl_dur	all	48	65.5	90.6	120		days	model
15 16		wet_bfl_mag_10	all	1.47	7.85	19.9	38.9	61.4		model
10	1/665/4/ 17665747	wet_bfl_mag_50	all	25 50.5	48.1 72.4	99.1 77.8	170 96	300 107	cts water yea	model model
18		ds dur ws	dry	115	162	205	240	280		model
19		ds_dur_ws	moderate	132	171	208	229		days	model
20		ds_dur_ws	wet	133	174	215	241		days	model
21	17665747	ds_mag_50	dry	0	0	3.62	15.8	30.5	cfs	model
22		ds_mag_50	moderate	0	0.285	9.07	21	39.6		model
23		ds_mag_50	wet	0	2.28	12.2	31.4		cfs	model
24 25		ds_mag_90	dry	0.852	2.44	8.73	18.7	42.8		model
26		ds_mag_90 ds_mag_90	moderate wet	9.32	6.06 19.4	14.4 54	40.8 106	90.1 184		model model
27	17665747		dry	196	216	237	269	312		
28	17665747		moderate	190	214	231	260		water yea	
29	17665747	ds_tim	wet	199	216	237	261	286	water yea	model
30	17665747		dry	15.4	34.4	112	250	768		model
31 32	17665747		moderate	28.2	72.6	178	445	1140		model
32 33	17665747		wet	42.3	97.7	277	807	2110		model
34	17665747 17665747		dry moderate	4.48 11.8	13 29	38.7 40.7	47.4 51		water yea water yea	
35	17665747		wet	12.5	24.5	40.9	52.7	62		
36	17665747		dry	19	33.4	56	101		days	model
37	17665747		moderate	19.4	31.6	47.9	90	126	days	model
38	17665747		wet	22.5	30.6	43.9	67.7		days	model
39 40	17665747		dry	26.4	84.8	260	781	2160		model
40	17665747 17665747		moderate wet	97.4 450	264 1180	816 3070	2180 6320	5520 13700		model model
42	17665747		dry	146	1180	182	192		water yea	
43	17665747		moderate	148	159	176	181		water yea	
44	17665747		wet	162	174	179	192	212		
45		wet_bfl_dur	dry	38	65	99.9	137	169		model
46		wet_bfl_dur	moderate	42.4	64	90.6	103		days	model
47 48		wet_bfl_dur	wet	59	79.2	91.7	117		days	model
40 49		wet_bfl_mag_10 wet_bfl_mag_10	dry moderate	0.195	2.63 5.83	10.3 19.9	22.9 37.5	40.7 58.7		model model
50		wet_bfl_mag_10	wet	6.57	20.8	67.1	134	264		model
51		wet_bfl_mag_50	dry	7.63	17.3	40.1	67.8	123		model
52		wet_bfl_mag_50	moderate	27.3	48.9	100	170	300		model
53		wet_bfl_mag_50	wet	97	189	350	730	1090		model
54	17665747		dry	26	38.7	70.2	102		water yea	
55 56	17665747 17665747	wet_tim	moderate	57.9 61.2	85.5	91.4	96.7 95.8		water yea	model model

Figure 19

Click on the sheet "Functional Flow Regime", this sheet is the interface between the functional flow for the reach that you selected and their graphical display (Figure 20). The sheet contains:

- *Summary of functional flow results*, in these cells you can explore the five functional flow components timing (start and ending water year days), magnitude, duration, rate of change and frequency.
- *Main controls* to change the results: (a) Dimensionless (scaled by the average daily average flow) or with units (in cfs) and (b) for displaying the different water year types: all, dry, moderate and wet.
- *Graphical interface* which provides a visual representation of the functional flow regime according to the selected water year type. This interface will be used for submitting your graphs.

• Monthly instream flows. results from these cell will be used to build your summary table

Figure 20

The graphical interface (Figure 21) shows the reference hydrograph (in blue lines and red line) for the river reach that was selected and the functional flow regime (black line). The reference hydrograph depicts the seasonal and interannual variation of flow of a Rain and Seasonal Groundwater river. The red line represents the median flow in a given date, the flow with the fiftieth probability. The outer dark blue lines represent the 10th percentile flow (low flows) and 90th percentile flow (high flow), in fact 80 percent of the natural Pajaro River flow occurred between these bounds. The inner light blue lines represent the 25th and 75th percentile flow, half of the time the natural pajaro river flow occurred between these bounds. Super cool!

Functional Flow Regime

Figure 21

The black line depicts the function flow regime. Notice that the x-axis is in days, and that it starts in October first, the first day of the water year. As you can see, the flow regime has a dry period season called *Dry-season baseflows* (approximately from day 250 all the way to day 100), a wet season called *Wet-season baseflows* (approximately from day 100 to day 190) and a transicion season called *Spring recession baseflows* (approximately from day 100 to 250). Also, it has two flow events, one in fall called *Fall pulse flow* (located in day 50 in Figure 21), and another in winter called *Peak Magnitude Flows* (located in day 150 in Figure 21).

Analyzing reference hydrographs

Let's start playing with the graphical interface. Go to cell F2 and select "1" (Figure 22) and go to cell F23 and select "moderate". As you can see in the graphical interface the y-axis has units which are cfs (cubic feet per second). Think of cubic feet per second as basketballs per second passing through the river. As you can see, the flow changes quite a lot, from almost 0 cfs (no basketballs passing through) to 5,000 cfs (5,000 basketballs per second passing through the river!). You can distinguish the season and have an idea of the natural flow regime. Also, you can notice that the system is driven by climate, mostly rain. From day 50 to day 175 you can see the spikes in the flow regime (look at the 90th percentile dark blue line), those streamflows are rain events that the river responds to by a sudden increase and decrease in the streamflow. Also, you can see that there is almost no rain from day 200, all the way to the next water year in day 30.

Figure 22

The next question will be: How flashy is the natural flow regime of Pajaro River? And by flashy, I mean how much the streamflow in the river changes when it rains (most likely when an <u>atmospheric river</u> occurs) in comparison to normal conditions? Go to cell F2 and select "0" (Figure 23). As you can see now the y-axis has values from 0 to 25. In this case, the streamflow values have been scaled (divided) by the average annual daily flow, which is 273.6 cfs (see cell B2). So, 1 unit in the y-axis means 273.6 cfs, 10 units means 2,736 cfs and so on. Dimensionless reference hydrograph gives you a good sense of how much the river changes from average conditions (1 unit) to high flow conditions, which in some days it can go 20 times larger! Cool! To have a sense if this variation is large or small, some snowmelt driven flow regimes in the high Sierra Nevada have a streamflow variation up to 6 times the annual daily average flow (see Figure 24.a), and some rain and snowmelt rivers in the foothills of the Sierra Nevada have a

streamflow variation up to 9 times the annual daily average flow (see Figure 24.b). Take a look at the <u>Functional Flow Calculator</u> (Figure 25) which is a graphical interface that shows the nine natural flow regime classes (that you saw on the videos) as well as the reference gauges that were deemed as unimpaired. Data from these 223 gages was used in statistical models (using machine learning algorithms) to predict the functional flow metrics that can be downloaded from the <u>California Natural Flows Database</u> website. Everything is coming together!

Figure 23

Figure 24. Snowmelt (a) and snow and rain (b) flow regimes

Figure 25. Functional Flows Calculator

To be turned in:

- Two charts showing the reference hydrograph with units and dimensionless (similar to Figure 21),
- A description of the seasonal and interannual variability of Pajaro River.

Determining instream flow recommendations

In the previous section, we explored and analyzed the natural flow regime. In this section we will focus our attention in the functional flow components from which a functional flow regime can be built. The functional flow regime (black line) can be used for recommending instream flows considering that it provides ecosystem functions (biotic and abiotic) that are beneficial for the river ecosystems living in it. Go to cell F2 and select "1", then go to cell F23 and select "all". The functional flow should look something like Figure 26. Notice that the interface randomly assigns the *fall-pulse flow* and *peak magnitude flow* component in late fall and the wet-season, respectively, so don't worry if these components are not located on the same date as in Figure 26.

Figure 26

As we learned in the section *Functional Flows Approach*, the functional flow regime is composed of 5 functional flow components (Figure 27): (1) dry-season low flow, (2) wet season base flow, (3) spring recession flow, (4) fall pulse flow, and (5) peak magnitude flows.

Figure 27. Identifying functional flow components in Pajaro River

Taking a closer look at the functional flow components, there are three functional flow components (1 to 3) associated with the adequate baseflow required to sustain the river ecosystem all year around. These *baseflows* provide the right amount of water quantity and quality all year around for any aquatic and riparian organism to live in <u>adequate conditions</u>. Adequate conditions are different from *minimum conditions*, because the ecosystem requires conditions to live adequately and not minimum conditions to barely survive. In this document we

have moved away from the concept of minimum conditions because it implies that we should leave in the river the minimum amount of water for the ecosystem to barely survive and not necessarily to thrive. Coming back to the description of *baseflows*, they provide longitudinal connectivity with the ocean and vertical connectivity with the aquifer underneath. In addition, there are two flow components (4 and 5) associated with rain events that provide ecosystem function to sustain water quality, physical habitat (movement of sediment, access to floodplains, sediment transport and deposition, bring wood material into the river channel and move it, etc.). The interaction of all the functional flow components provide suitable conditions for the river ecosystem within a year and among years.

For the rest of the exercise, we will focus on obtaining instream flows considering: all available years, and considering water type years (dry, moderate and wet). For doing these, we will fill the table in cell M32:Y35 (Figure 28) with the monthly values. Also, we will estimate the daily flow regime, similar to Figure 4, so we can graphically show the instream flows for three water year types.

Go to cell F23 and select "all". Then select, cells M28 to Y28 (M28:Y28), copy them (Ctrl+C) and paste them special in cell M32 (right click, Paste Special, Paste Values Only, or

Ctrl+Shift+V) in "Recommended Instream Flows" table for the row "all" (Figure 29 and 30). Also, copy all the row 16 from B16 to NC16 (B16:NC16) and paste it special as values (Ctrl+Shift+V) in row 18 (Figure 31). Repeat this procedure 3 more times, by selecting in cell F23 dry, moderate and wet. As you are changing the water year type, notice how the functional flow regime changes, the baseflows (wet-season base flow, spring recession flows, and dry-season low flows), false pulse flow and peak magnitude flows. Copy and pasting special (only values) in table Recommended Instream Flows and in rows 19 to 21. The Recommended Instream Flows table and rows 18 to 21 should look like Figure 32.

→ 0 (# c)	locs.go	ogle.cor	n/spres	dahee	ts/d/11/	WZEWU8	U4WpAAU	WZj-dłó	iu/Ww/f	InpQib	X1E9CKs5tC	2/edit#gid=1973362625																Q 1	0	*	4
E												☆ 田 企 it was seconds ago													~*	E	1	÷.	Share		0
5 7 B	7	50%	-	s	× .0	.00	123 -	Defaul	(Ca	-	11 - 7		- 3	÷	= · 1 · H · N	7 - 00		- T		Σ.											
1.2918545	26847	29										X Cut Ctrl	Х																		
											- L - H	Copy Ctrl	сİ	1	1 7 N X	¥ 1	AA		-	-10			A2	44		AJ.	ж	6	All	44	
rop insul Ne	273.6			e portesa.		E-Descap	the Lords of								20 8 10 10	34 25	26								14						
h percentite h percentice	8.41	10.04	20.29	20.24	18.20	10.00	8.80	9.39	10.28	30.M	2038 208 14.20 14.4	📋 Paste 🛛 Ctrl-			11.00 11.80 13.50 13.80 16.53 16.63 17.69 17.19			11.27	11.29	12.44			2620	20.88	18.30	11117	17.60	11.00		28.00	28
fan I penantile	18.05	19.10	19.70	15.40	18.16	22.73	2012	29.72	11.49	11.15	11.00 H.8	Paste special						14.82	1107	26.05	28.11	27.34	25.83	19.87	19.79	19.55	10.14	1154	34.64	34.28	-2
percentia	45.61	49.17	e 5.09	45.63	44.50	40.72	42.74	42.62	47.66	49.00	45.12 47.5	rusic opecial			Paste values only	Ctrl+Sh	ift+V	45.35	14.35				68.18	0.0	79.48	75.50	114.52	3436.96			
etional Beet Frees	21.61	26.65	26.66	21.01	2161	2181	2141	21.01	26.06	26.06	2141 214				Paste format only	Ctrl+/	VIII+V	26.05	26-05	21.01	2141	21.61	21.85	25.86	26.06	26.06	26.66	3161	3161	2161	2
h fan 10h pesentle k fan												Insert row			- ange recting only	201172															
Flow New Terminian Program	21.61	11.01	31.61	21.61	2141	2141	3141	21.04	26.06	11.01	1141 314	Insert 13 columns			Paste all except bor	ders		21-01	11.01	21.01	2141	21.61	21.81	21.05	21.06	21.01	21.01	31.61	3161	2161	
												insert is columns			Provide and house and date																
bry Normal												Insert cells	ь.		Paste column width	s only															
Area																															
	(hate	Magnitude			10.0				sings of last	are share	then pulse	Delete row			Paste formula only																
en Dry-massie bean Rows		6.00					Spring to an also 129	-	204		1	Delete row									desire at a	Wes.									
rting - high-mag 2 of the year - high-mag	215 800 866	4)17		ine has		248.3	871.0	916.2	111.0		205	Delete columns M - Y			Paste data validatio	n only		try.	196.5 182.0	6.33	201.0	1.00									
for the year - low mag ting - low mag	115	6.00													Paste conditional for	rmatting	only														
n of your - low mag		6.00			Oryanam	Newscon	Spring received	Mapin			~ 1	Delete cells	•						0.0	ner yna'											
d of your high mag d high mag	- 06	40.17 40.17		Mellan Gan Date	236	18	129	263			Bry				Paste transposed			1890		nale sis											
- Der mag Laf yner - laer meg	- 99	6.00		She had	83	216	821.0	226				OD Insert link Ctrl-						1952		10											
											Fi.							1954	43 242	ey. wit											
p. Art scars bas fee	date:	Magnitude										Get link to this range			unorth a functional from legance			1952	38	-											
ting - how mag ting - high mag	12	68.18																1010		and .											
d be year - high mag d day year 1 law mag	191	109.20																1990		and a state											
ing - tow mag	n	48.14										Define named range						191	100	noter an											
												-						1964	186	noteres .											
pr. Lating Researcion	The state	Magnitude										Protect range						1915		nule da											
ing - low mag	192	84.25																1967	167	100											
of the year - high-mag	194											-						1965	50	-											
of the year - New mag-	130	218.22										Comment Ctrl+Alt+	M					1972	22	-											
																		1972	61	04											
	0.ee	Magnitude										Insert note						1014		-											
ge. Fall-gabe over:		26.87												L.	1.1			1975	- 104	and a state of the											
ting - high mag	14	1009.01											- 1	-		-				#W											
t of the year - high mag	20	3099.31										Conditional formatting						1978		-											

Figure 29

Figure 32

Take a closer look at the Recommended Instream Flows table (Figure 33). How large or small are the recommended instream flows in comparison with the natural flows? We can estimate this easily. Go to cell Z32 and estimate the overall annual average flow for the time series data of annual natural flows in column AC (AC33:AC98) using the following formula: "=average (\$AC\$33:\$AC\$98)" (See figure 34).

	Recommended Instream Flows								Reference						
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	Values	
All	0.5	0.8	0.5	5.6	24.9	6.1	11.9	7.6	2.0	0.5	0.5	0.5	61.3	198.1	31%
Dry	0.2	0.4	0.2	1.8	2.2	7.4	Sample	Tut ⁷ 04	1.9	0.2	0.2	0.2	47.5	56.0	85%
Moderate	0.6	0.9	0.6	24.8	5.6	7.1	15.4	7.2	1.4	0.6	0.6	0.5	65.0	132.5	49%
Wet	0.7	1.3	0.7	36.9	19.4	21.5	16.4	7.7	1.8	0.7	0.7	0.7	108.6	393.9	28%

Figure 33

h	198.1>	< F	90% 🔻	\$%	.u, .uu	123 -)eta
fx	=avera	ge(\$AC\$33	:\$AC\$98)				
	Y	Z	AA	AB	AC	AD	
30		Reference					
31	Annual	Values				water year	
32	61.3	=average(\$AC\$33:\$A((\$98	(TAF)	type	
33	47.5			1950	118	moderate	
34	65.0			1951	130	moderate	
35	108.6			1952	413	wet	
36				1953	76	dry	
37				1954	69	dry	
38				1955	242	wet	
39				1956	289	wet	
40				1957	54	dry	
41				1958	522	wet	
42				1959	128	moderate	
43				1960	88	moderate	
44				1961	32	dry	
45				1962	186	moderate	
46				1963	208	wet	
47				1964	106	moderate	
48				1965	151	moderate	
49				1966	88	moderate	
50				1967	387	wet	
51				1968	53	dry	
52				1969	574	wet	
53				1970	217	wet	
54				1971	77	dry	
55				1972	61	dry	
56				1973	500	wet	
57				1974	222	wet	
58				1975	164	moderate	
59				1976	31	dry	
60				1977	39	dry	
61				1978	477	wet	
62				1979	142	moderate	
63				1020	201	wot	

You can also estimate the average of dry, moderate and wet conditions using the "Average if …" function. Go to cell Z33 and estimate the annual average flow for dry conditions in column AC (AC33:AC98) using the following formula (See figure 35):

"=averageifs(\$AC\$33:\$AC\$98,\$AD\$33:\$AD\$98,L33)". Notice that the first range of cells that are declared in this function ("\$AC\$33:\$AC\$98") are the cells that the average will be

calculated. The cells that will filter the average calculation are the one in the following column (\$AD\$33:\$AD\$98), and the discriminator is in cell L33, which is the text "Dry". Also, notice that the dollar sign is written before declaring the columns and rows, this is to fix the range, so when you copy and paste this formula, they refer always to the same range. You can easily fix the rows and cell by typing the cell "F4" (in the upper left corner of your keyboard) to fix the cells. Notice that this is how you can estimate very quickly an average estimation considering filtering for certain characteristics. Do the same procedure for estimating the average annual flow for moderate and wet conditions. Copy cell Z33 (Ctrl+C) and paste it on cells Z34 and Z35 (Ctrl+V). Results should look like figure 36.

	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD
0						Re	ecommer	ded Inst	ream Flow	ws					Reference				
1		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	Values				water year
2	All	0.5	0.8	0.5	5.6	24.9	6.1	11.9	7.6	2.0	0.5	0.5	0.5	61.3	198.1			(TAF)	type
3	Dry	0.2	0.4	0.2	1.8	Samp	ole , T ut	torial	7.4	1.9	0.2	0.2	0.2	47.5	=averagei	fs(<mark>\$AC\$3</mark> 3	\$AC\$98,\$AD	D\$33:\$AD	\$98,L33) te
4	Moderate	0.6	0.9	0.6	24.8	5.6	7.1	15.4	7.2	1.4	0.6	0.6	0.5	65.0			1951	130	moderate
5	Wet	0.7	1.3	0.7	36.9	19.4	21.5	16.4	7.7	1.8	0.7	0.7	0.7	108.6			1952	413	wet
6																	1953	76	dry
7																	1954	69	dry
В																	1955	242	wet
9																	1956	289	wet
)																	1957	54	dry
1																	1958	522	wet
2																	1959	128	moderate
3																	1960	88	moderate
4																	1961	32	dry
5																	1962	186	moderate
5																	1963	208	wet
7																	1964	106	moderate
B																	1965	151	moderate
9																	1966	88	moderate

Figure 35

	Recommended Instream Flows									Reference				
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	Values
All	0.5	0.8	0.5	5.6	24.9	6.1	11.9	7.6	2.0	0.5	0.5	0.5	61.3	198.1
Dry	0.2	0.4	0.2	1.8	2.2	7.4	c 25 210	Tut <mark>o</mark> rial	1.9	0.2	0.2	0.2	47.5	56.0
Moderate	0.6	0.9	0.6	24.8	5.6	7.1	15.4	7.2	1.4	0.6	0.6	0.5	65.0	132.5
Wet	0.7	1.3	0.7	36.9	19.4	21.5	16.4	7.7	1.8	0.7	0.7	0.7	108.6	393.9

Figure 36

In order to respond to the question "How large or small are the recommended instream flows in comparison with the natural flows?" you have to compare the results of the recommended

instream flows (Y32:Y35) with the annual average streamflow that you just calculated (Z32:Z35). Let's start with all years, by dividing the recommended instream flow (cell Y32) over the all year annual streamflow (cell Z32) using the following equation in cell AA32 (see figure 37): "=Y32/Z32". Copy (Ctrl+C) and paste (Crtl+V) this formula in cells AA33, AA34 and AA35. Results should look like Figure 38.

fx	31% ×		90% 👻	\$ %	.C
	х	Y	Z	AA	
30			Reference		
31	Sep	Annual	Values		
32	0.5	61.3	198.1	= <mark>Y32</mark> /Z32	
33	0.2	47.5	56.0		
34	0.5	65.0	132.5		
35	0.7	108.6	393.9		

Figure 37

	Recommended Instream Flows									Reference					
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual	Values	
All	0.5	0.8	0.5	5.6	24.9	6.1	11.9	7.6	2.0	0.5	0.5	0.5	61.3	198.1	31%
Dry	0.2	0.4	0.2	1.8	2.2	7.4	Sample	Tut <mark>o</mark> rial	1.9	0.2	0.2	0.2	47.5	56.0	85%
Moderate	0.6	0.9	0.6	24.8	5.6	7.1	15:4	7.2	1.4	0.6	0.6	0.5	65.0	132.5	49%
Wet	0.7	1.3	0.7	36.9	19.4	21.5	16.4	7.7	1.8	0.7	0.7	0.7	108.6	393.9	28%

Figure 38

Now, we can respond to the question: "How large or small are the recommended instream flows in comparison with the natural flows?" 31% if you consider all years, 85% during dry years, 49% during moderate years, and 28% during wet years. Cool!

The last part of this exercise is to display these results graphically, at the monthly and daily time-scale. Let's start by creating a display at the monthly scale. Select cells L31 to X35 from the

Recommended Instream Flows table (Figure 39). Go to the menu Insert / Chart. Change on the Chart Editor (shown in the left side of the screen) in chart type "Line Chart" (Figure 40), and all the way down to the bottom in the Chart Editor check the box "Switch rows / columns" (Figure 41). Modify the colors of the chart as a gradient to identify all (black) wet, moderate and dry years (a gradient of green). Give this chart a personal touch, use a different color other than green. Add the units of the y-axis by selecting in the Chart Editor "Chart & axis titles / Vertical axis title " and typing "Volume (thousand acre-foot)" (Figure 42). IMPORTANT: Notice that the Functional Flows Interface automatically assigns a random date (within the timing range) for the Fall Pulse Flow and Peak Flow components. What this means is that your Functional Flow regime in these components should look different than ours shown in Figure 52, they should look different but the overall annual volumes should be similar.

fx															
	к	L	м	N	0	Р	Q	R	S	т	U	V	W	х	Y
25			31	61	92	123	151	182	212	243	273	304	335	365	Annual
26			31	30	31	31	28	31	30	31	30	31	31	30	Volume
27			Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	TAF
28			0.5	0.8	0.5	5.6	5.5	25.4	11.9	7.6	2.0	0.5	0.5	0.5	61.3
29															31%
30							Re	ecommer	nded Inst	ream Flov	NS				
31			Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Annual
32		All	0.5	0.8	0.5	5.6	24.9	6.1	11.9	7.6	2.0	0.5	0.5	0.5	61.3
33		Dry	0.2	0.4	0.2	1.8	2.2	7.4	25.2	7.4	1.9	0.2	0.2	0.2	47.5
34		Moderate	0.6	0.9	0.6	24.8	5.6Sai	nple Tu	toria	7.2	1.4	0.6	0.6	0.5	65.0
35		Wet	0.7	1.3	0.7	36.9	19.4	21.5	16.4	7.7	1.8	0.7	0.7	0.7	108.6

Figure 39

Figure 40

Figure 41

Figure 42

Now, go to cell F23 and select "all". Then select the daily Functional Flow Regime chart, click on the three dots in the upper right corner of the chart and select Edit Chart (Figure 43). In the window if "Setup" go all the way to the bottom and select "Add Series" and Select "Add data range" in the upper portion of the window. In select data range, use the mouse to select cells of the dry daily flow regime: A19:NC19 (Figure 44). Repeat the same procedure for the moderate and wet flow regimes.

Figure 44

(a) Conceptual instream flows obtained from the functional flows approach

(b) Recommended instream flows for Pajaro River for dry, moderate and wet years

Figure 45. Recommended instream flows

To be turned in:

- The Recommended Instream Flows Table (similar to Figure 38), a brief description of each recommended instream flows
- One chart showing the monthly volumes of the recommended instream flows (similar to Figure 42) for: all, dry, moderate and wet water years.

- One chart showing the recommended daily instream flows (similar to Figure 45.b) where the functional flow components are shown conceptual and estimated for: dry, moderate and wet water years.
- Discussion on the reasoning for considering environmental water demands and what are the benefits for the river ecosystem and the society. Hint: you can frame your response in terms of ecosystem functions and ecosystem services.
- Extra points: Make a table relating each functional flow component for an ecosystem function and how these functions will help to sustain the river ecosystem that depends on the instream flows)

Functional Flow Component	Ecosystem Function (Biotic or abiotic function)	Benefit to the relevant ecosystem
Fall pulse flow	e.g. flush of water that eliminates poor water quality along the river	resets water quality after a long period of low flows
Peak magnitude flows		
Wet-season base flow		
Spring recession flows		
Dry-season low flow		