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Abstract
Energy use forecasting is crucial in balancing the electricity supply and demand to re-
duce the uncertainty inherent in the inter-basin water transfer project. Energy use predic-
tion supports the reliable water-energy supply and encourages cost-effective operation 
by improving generation scheduling. The objectives are to develop subsequent monthly 
energy use predictive models for the Mokelumne River Aqueduct in California, US. Par-
tial objectives are to (a) compare the model performance of a baseline model (multiple 
linear regression (MLR)) to three machine learning-based models (random forest (RF), 
deep neural network (DNN), support vector regression (SVR)), (b) compare the model 
performance of the whole system to three subsystems (conveyance, treatment, distribu-
tion), and (c) conduct sensitivity analysis. We simulate a total of 64 cases (4 algorithms 
(MLR, RF, DNN, SVR) x 4 systems (whole, conveyance, treatment, distribution) x 4 
scenarios (different combinations of independent variables). We concluded that the three 
machine learning algorithms showed better model performance than the baseline model as 
they reflected non-linear energy use characteristics for water transfer systems. Among the 
three machine learning algorithms, DNN models yielded higher model performance than 
RF and SVR models. Subsystems performed better than the whole system as the models 
more closely reflected the unique energy use characteristics of the subsystems. The best 
case was having water supply (t), water supply (t-1), precipitation (t), temperature (t), and 
population (y) as independent variables. These models can help water and energy utility 
managers to understand energy performance better and enhance the energy efficiency of 
their water transfer systems.

Keywords Energy use prediction · inter-basin water transfer project · machine learning · 
water-energy nexus · Mokelumne River Aqueduct
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1 Introduction

Moving and treating water are very energy-intensive processes. Approximately 30% of 
municipal government spending goes to energy use for drinking and wastewater (EPA, 
2022). About 10% of electricity use in California accounts for moving, pumping, and treat-
ing water – much of which (4%) is used for water conveyance alone (PPIC 2018). With the 
rise in the water sector’s electricity consumption, accurate energy consumption prediction is 
essential to establish plans for electricity supply and demand for water facilities (Dobschin-
ski et al. 2017). Municipal water utilities and electricity grid operators benefit from well-
predicted energy use by avoiding expensive ramping and blackouts caused by unanticipated 
energy use surges. Accurate energy consumption prediction can also reduce under- or over-
estimating energy use (Pasha, Weathers, and Smith 2020). Overestimating energy use can 
lead to excessive investment in electricity supply and, ultimately, higher electricity prices 
(Silveira and Mata-Lima 2021). Underestimating energy use can result in electricity sup-
ply shortages, power system outages, and disruptions to water supply systems (De Felice, 
Alessandri, and Ruti 2013). Therefore, accurate energy use prediction is fundamental in 
establishing a plan for electricity supply and demand (Perelman and Fishbain 2022).

Different modeling approaches are available to predict water-related energy use. We con-
duct a literature review to identify the evolving approach to forecasting the water sector’s 
energy use.Over the past decade, the prediction of energy requirements for the water-energy 
nexus approach in modeling has evolved to assess the water and energy systems simultane-
ously. As the nexus approach emerged as a frontier issue, the approach evolved into integrat-
ing the water constraints into physical-based energy models such as MARKet ALlocation/ 
The Integrated Markal Efom System (MARKAL/TIMES) (Suganthi and Samuel 2012). 
The downside of this approach is that the water system’s characteristics are often not fully 
incorporated. This approach also makes it challenging to aggregate and synchronize the 
water and energy systems across different spatial and temporal scales. Another approach 
includes simulating the water and energy systems independently, and their outcomes pass to 
the other model until reaching convergence, such as Water Evaluation and Planning – Long-
range Energy Alternatives Planning system (WEAP-LEAP) (Dale et al. 2015). Individual 
modeling evolved into integrated modeling, such as the Climate, Land, Energy, and Water 
framework (CLEW) (Howells et al. 2013), Water and Energy Simulation Toolset (WEST) 
(Thuy and Jeffers 2017), and the Water, Energy, and Food Nexus Tool (Endo et al. 2020). 
These models can capture the spatial variability of meteorological conditions and physical 
parameters within a river basin. Therefore, these models often require a large amount of 
topographical, soil, land use, and climate data.

In recent years, data-driven models have drawn attention to water-energy nexus model-
ing. The California Energy Commission, the primary energy planning agency in California, 
has been using regression analysis to forecast energy use in agricultural and municipal water 
pumping (California Energy Commission 2005). Machine learning-based models have also 
proven to be useful in simulating the energy use for a wastewater treatment plant (Bagherza-
deh et al. 2021; Das, Kumawat, and Chaturvedi 2021; Li and Tang 2021; Zhang et al. 2021) 
and a distribution system (Salvino, Gomes, and Bezerra 2022). Various studies have applied 
machine learning algorithms in forecasting water-related energy demand but were limited 
to forecasting the energy use for a single water facility. Prior study has yet to examine and 
compare the model performance for the entire water transfer system and the subsystems 
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in the water transfer scheme. Machine learning algorithms may have performed well in 
predicting the energy use for an individual water facility. Though, little is known about pre-
dicting the energy use for a group of water facilities applying machine learning. Inter-basin 
water transfer projects like the State Water Project or the Mokelumne River Aqueduct may 
have their energy prediction models, but these models are unknown or publicly unavailable.

The novelty of this work is testing how well the machine learning-based energy fore-
casting model for the inter-basin water transfer project predicts the subsequent monthly 
energy use. As the inter-basin water transfer systems are known to be complex, with a series 
of dams, pumping plants, conveyance systems, treatment plants, and distribution systems, 
it is challenging to incorporate the physical characteristics of infrastructures and systems 
into a single physical-based model. The energy consumption for an inter-basin water trans-
fer project depends on travel distance, topography, climate, water volume, pipeline length 
and diameter, water quality, and technology (Wakeel et al. 2016). Therefore, we attempt to 
demonstrate the superiority of machine learning applications in linking, analyzing, and pre-
dicting future energy use for water transfer systems. We use the multiple linear regression 
(MLR) as a baseline model to compare its results with three machine learning-based models 
(random forest (RF), deep neural network (DNN), and support vector regression (SVR)) 
that are non-linear. Based on the literature review, these three machine learning algorithms 
are well-performing models predicting energy use for a single treatment or distribution sys-
tem. We use four model performance indices (coefficient of determination (R2), root mean 
square error (RMSE), the mean absolute error (MAE), and percent error in peak (PEP)) to 
evaluate the efficiency of the baseline and machine learning-based models.

We select an inter-basin water transfer project in California. The most significant explan-
atory factors underlying the increasing energy consumption in California’s water sector 
are desalination, followed by inter-basin water transfers (Sanders and Webber 2012). We 
choose the Mokelumne River Aqueduct system as it is less grand in scale (e.g., length, 
annual water delivery, cost) than the other water transfer projects in California (e.g., State 
Water Project, Central Valley Project).

Another novelty of this study is comparing the model performance for the entire water 
transfer system and its subsystems. The subsystems include conveyance (transporting water 
from the water source to the treatment system), treatment (moving water from the treatment 
plant to the distribution system), and distribution (delivering water from the distribution 
plant to the end-user). We exclude energy use from the other subsystems like source extrac-
tion, end-users, wastewater treatment, and recycled water, as they are outside the scope of 
this study. The rest of the sections are in order: Study area; Methods; Results; Discussion; 
Conclusions.

2 Study area

The East Bay Municipal Utility District (EBMUD) owns and operates the Mokelumne River 
Aqueduct, an inter-basin water transfer project providing water from the Sierra Nevada 
Range to urban areas in Alameda and Contra Costa counties adjacent to San Francisco Bay, 
California. Every year, EBMUD purchases electrical energy (for the water supply system) 
from six major providers including PG&E, the largest energy utility in the area.
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From 1929, the Mokelumne River Aqueduct begins delivering water to East Bay cities 
in Alameda and Contra Costa counties (Fig. 1). Figure 1 is a map of the Mokelumne River 
Aqueduct System. The head waters of the Mokelumne River are in the Sierra Nevada south 
of Lake Tahoe. The River is largely snowmelt-fed, flowing down to the Pardee Reservoir 
(259million m3 capacity) at 175m elevation. Water released from Pardee flows into Caman-

Fig. 1 Map of Mokelumne River Aqueduct system
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che Reservoir (532million m3 capacity), impounded by Camanche Dam 10km downstream 
of Pardee Dam, operated in tandem with Pardee Reservoir. Camanche Reservoir set up to 
provide irrigation water, while the Pardee Reservoir provides municipal water. The Pardee 
and Camanche Dams have hydroelectric power facilities, though the electricity generation 
from these facilities is beyond the scope of this study. While the Mokelumne River Aque-
duct is significantly smaller than the mega-scale inter-basin water transfer schemes in Cali-
fornia (e.g., the California State Water Project, the Central Valley Project), it still consumes 
large amounts of energy for the water supply system. Where the donor basin is at high eleva-
tion, when the source is at high elevation, hydropower generation can in some cases at least 
partially compensate for power consumption from pumping. However, we did not consider 
hydropower revenues in this study, and the potential for power generation would be minor 
given that the elevation of Pardee Reservoir is only 175m.

The water makes a journey of over 153km across the Central Valley in pipes. The three 
pipelines bring the water to terminal reservoirs (San Pablo Reservoir, Briones Reservoir, 
Lafayette Reservoir, Upper San Leandro Reservoir, and Chabot Reservoir) or water treat-
ment plants before it is distributed to approximately 1.4million people (Fig. 2). Figure 2 
illustrates the conveyance, treatment, and distribution systems. The whole system includes 
energy used to pump water from the Mokelumne River Basin to end-users. We also include 
the energy used to move water from the Nimbus Dam on the Sacramento River through the 
Folsom South Canal, a water source supplementary to the main source on the Mokelumne 
as part of the conveyance system. The treatment system comprises energy for moving the 
water from some terminal reservoirs into one of the treatment plants. The distribution sys-
tem is moving water from the treatment plants to the designated end-users.

EBMUD holds rights to 449million m3 per year from the Mokelumne River. Two-thirds 
of the water serves residential and commercial users, and the rest for agricultural and indus-
trial users. The Folsom South Canal Connection (completed in 2009) supplements water 
during droughts by drawing water from the American River near Sacramento. EBMUD uses 
123,841 MWh of energy for the Mokelumne River Aqueduct at an average cost of about 
$13,577,872 per year. The biggest energy uses are water distribution within the service area 
(63%) and wastewater treatment (12%). Raw water treatment uses only 7%, conveyance 
from Pardee Reservoir to terminal reservoirs 4%, and unspecified other losses of 14%.

Fig. 2 The whole, conveyance, 
treatment, and distribution 
systems in the Mokelumne River 
Aqueduct
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3 Methods

3.1 Data Description and Feature Selection

The meteorological (e.g., precipitation, temperature, humidity, solar radiation), economical 
(e.g., GDP), and demographical (e.g., population) factors are the most influential elements 
for estimating energy consumption (Donkor et al. 2014). For all our energy use predic-
tion models, a dependent variable is energy use, and independent variables are water sup-
ply, precipitation, temperature, and population (Table 1). Table 1 is a list of dependent and 
independent variables for the whole, conveyance, treatment, and distribution system. The 
California Data Exchange Center provides monthly precipitation data. The National Oce-
anic and Atmospheric Administration provides monthly temperature and relative humidity 
data. Annual population data comes from the US Census Bureau. The annual gross domes-
tic product data comes from the Bureau of Economic Analysis for the Costa and Alameda 
Counties from 2005 to 2020. EBMUD provides monthly water supply data (1963–2020) 
and monthly energy use data (2005–2020). In this study, only limited water and energy data 
are available to work with as the overlapping water and energy data are from 2005 to 2020.

We perform the feature selection to evaluate the importance of independent variables 
on a dependent variable and to identify a subset of the most relevant variables for energy 
use prediction. We assess the importance of each variable by turning on one of the input 
variables while keeping the rest constant and measuring the decrease in accuracy (Breiman 
2001). The initial input variables are the monthly water supply (t), water supply (t-1), water 
supply (t-2), water supply (t-3), water supply (t-4), temperature (t), temperature (t-1), annual 
population (y), precipitation (t)¸ precipitation (t-1), annual gross domestic product (y), and 
relative humidity (t). Here, “t” stands for a current month, 1, 2, 3, or 4 denotes the number 
of months before the current month, and “y” stands for a year. The top six importance vari-
ables, or the final input variables, are water supply (t), water supply (t-1), temperature (t), 
population (y), precipitation (t), and precipitation (t-1).

We simulate a total of 64 cases (4 algorithms (MLR, RF, DNN, SVR) x 4 systems (whole, 
conveyance, treatment, distribution) x 4 scenarios (different combinations of independent 
variables) (Table 2). Table 2 shows four scenarios with the current monthly time step (t) 
and the previous monthly time step (t-1). For example, in Scenario 1 (S1), at the end of the 

System Dependent 
variable

Independent variable

Whole Energy use for 
whole

Water supply for whole,
precipitation, temperature, 
population

Conveyance Energy use for 
conveyance

Water supply for conveyance,
precipitation, temperature, 
population

Treatment Energy use for 
treatment

Water supply for treatment,
precipitation, temperature, 
population

Distribution Energy use for 
distribution

Water supply for distribution,
precipitation, temperature, 
population

Table 1 Description of depen-
dent and independent variables 
for four models
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current month, we can forecast the energy use for the next month with observed data (e.g., 
precipitation, temperature, GDP) from the current month. Precipitation, temperature, and 
population are the same dataset for the four systems. Energy use and water supply datas-
ets differ by the whole (sum of three subsystems), conveyance, treatment, and distribution 
systems.

3.2 Model Implementation

Figure 3 illustrates the model development procedure. We first collect the raw input data-
set and perform feature selection to select the most influential independent variables on a 
dependent variable. We preprocess these datasets by calculating the total energy consump-
tion for conveyance, treatment, and distribution systems. We add up the monthly energy 
use data from individual pumping plants. The conveyance system has nine pumping plants, 
the treatment system has six pumping plants, and the distribution system has 131 pump-
ing plants. We average precipitation values from seven precipitation stations in the service 
area using the Thiessen polygon method in ArcGIS. These preprocessed input variables are 
randomly assigned to a training set (80%) and a testing set (20%). Both split sets include 

Fig. 3 Model development workflow. The workflow starts from the top-left and ends at the bottom-right

 

Sce-
nario 
(S)

Energy 
use

Water 
supply

Precipitation Temperature Pop-
ula-
tion

1 E 
(t + 1)

W (t) R (t) T (t) P 
(y)

2 E 
(t + 1)

W(t), 
W(t-1)

R (t) T (t) P 
(y)

3 E 
(t + 1)

W (t) R (t), R (t-1) T (t) P 
(y)

4 E 
(t + 1)

W(t), 
W(t-1)

R (t), R (t-1) T (t) P 
(y)

Table 2 Description of depen-
dent and independent variables 
for three models. Monthly en-
ergy use (E), water supply (W), 
precipitation (R), temperature 
(T), and annual population (P) 
are the main variables in differ-
ent time-steps
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randomly selected dependent and independent variables. We keep the size of training large 
as possible because machine learning models require a large amount of data to capture 
the dynamics of energy use patterns. We use 10-fold cross-validation to avoid throwing a 
significant portion of data away in a testing set. We evaluate the model performance based 
on the four model performance indices. We assess the performance of each model with R2, 
RMSE, MAE, and PEP. Each performance indices for the training and testing set provides 
numerical values to assess the quality of training calculations and algorithm predictions dur-
ing testing. We select the best machine learning model and compare it to the baseline model. 
We repeat this process for a total of 64 cases. The last step is performing the sensitivity 
analysis to determine the sensitive variables for the model. We approximate the individual 
variable’s relative contribution to the final output’s variance by squaring the rank correla-
tion coefficient between input variables and final output and then normalizing it to 100% 
(Sadiq, Rajani, and Kleiner 2004). The variables with the highest relative contribution are 
the sensitive input variables, reducing the greatest uncertainty in the results (Hoffman and 
Hammonds 1992).

3.3 Machine Learning Techniques

3.3.1 Multiple Linear Regression

A baseline model is simple to set up and has a reasonable chance of providing decent results. 
Linear regression (LR) and multiple linear regression models often serve as baseline models 
for forecasting water or energy uses (Al-Musaylh et al. 2018). LR and MLR model work on 
any dataset size of the dataset and provides information about the relevance of the features 
(Kitessa et al. 2021). MLR analysis can provide decent energy demand forecasting for short- 
and medium-term analysis (Hong and Fan 2016) even with a limited sample size (Samuel 
et al. 2017). MLR is a regression model that estimates the relationship between a dependent 
variable and two or more independent variables. MLR is expressed as the following:

 Yi = β0 + β1Xi1 + β2Xi2 + · · · + βpXip + εi, i = 1, 2, . . . , n  (1)

Where Y  and X  denote dependent and independent variable, n  is the number of datasets, 
β  stands for the regression coefficient, p  stands for the number of independent variables, 
and εi  is the random error.

3.3.2 Random Forest

An ensemble learning technique uses the same base algorithm to provide multiple predic-
tions and average them to produce a final model (Friedl and C.E. 1997). Random For-
est (RF) is an ensemble learning technique (e.g., classification trees, regression trees) (Ho 
1998). The four main features of the RF algorithm are bootstrap resampling, random feature 
selection, out-of-bag error estimation, and a fully grown decision tree (Jiang et al. 2009). 
The parameterization of RF is much simpler and computationally lighter than other machine 
learning algorithms. The number of trees in the forest (ntree) and the number of random vari-
ables in each tree (mtry) are the two main parameters (Breiman et al. 2018). RF also offers 

1 3



Only for reading 

do not download

Application of Machine Learning-based Energy Use Forecasting for…

a function of assessing the relative importance of the features (variables), and selecting the 
most important features, and reducing dimensionality (Breiman 2001).

3.3.3 Deep Neural Network

Neural networks have extensive applications in predicting behaviors (Goodfellow, Bengio, 
and Courville 2016). The neural network is popular for short- and medium-term energy 
forecasting (Azadeh et al. 2007). An artificial neural network (ANN) uses one hidden layer 
(e.g., one layer between input and output). A deep neural network is an ANN with multiple 
hidden layers between the input and output layers. These extra layers enable the composi-
tion of features from lower layers, potentially modeling complex data with fewer units than 
similarly performing networks (Goodfellow, Bengio, and Courville 2016). The main param-
eters are the number of layers, number of neurons per layer, and number of training itera-
tions. Normalizing the input dataset for DNN is a well-established technique for improving 
the convergence properties of a network. We normalize the input datasets using a max-min 
normalization technique. The mathematical formation is as follows:

 
x

scaled= x−min(x)
max(x)−min(x) (2)

3.3.4 Support Vector Regression

The support vector algorithm (SVA) is for a nonlinear generalization algorithm (Vapnik 
1963). The support vector regression originates from SVA (Cortes 1995). SVR is the non-
linear mapping of the original data into a high-dimensional feature space using a kernel 
function (Kalra, Ahmad, and Nayak 2013). The kernel function includes linear, polynomial, 
sigmoid, and radial bases (Gaussian) (Boser, Guyon, and Vapnik 1992). We choose the 
radial basis function, the most common kernel function applied in hydrology (Dibike et al. 
2001). SVR model shows good performance in medium-term energy forecasting (He et al. 
2017). SVM is an optimal method for regression problems with a small dataset (Minghui 
and Chuanfeng 2015). We normalize the input datasets using a max-min normalization tech-
nique. The regularization parameter (C), the tolerance threshold (ε), and the width of the 
radial basis function (ϒ) are the key parameters.

3.4 Performance Indices

We compute four model performance indices, which are a coefficient of determination (R2), 
root mean square error (RMSE), the mean absolute error (MAE), and percent error in peak 
(PEP). These indices are well-known for evaluating the reliability of hydrological mod-
els (Doycheva et al. 2017). R2 represents the fitness of observed and predicted data on 45 
degrees reference line (Kazemi and Barati 2022). A higher coefficient indicates a better fit 
for the model. The R2 is the following:

 
R2 =

1 −
∑n

i=1 (yi − fi)
2

∑n
i=1 (yi − ŷ)2  (3)
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Where n is the total number of observed data, yi is the observed value for data point i, ŷ  
is the mean of the observed data, and fi is the predicted value for data point i. RMSE is the 
square root of the mean square of all errors (Alizadeh et al. 2017). It measures the error of a 
model in predicting quantitative data. A small RMSE value indicates that the model predicts 
the observed data well, while a large RMSE value generally means that the model fails to 
account for key features underlying the data (Sadeghifar and Barati 2018). RMSE is the 
following:

 

RMSE =

√√√√1
n

n∑

i=1

(yi − fi)
2  (4)

MAE represents the average absolute difference between the observed and predicted values 
in the data (Shu et al. 2022). It measures the average magnitude of the error. A lower MAE 
indicates a better model, and 0 means the model is perfect. MAE is the following:

 
MAE =

1
n

n∑

i=1

|yi − fi|  (5)

The percent error in peak energy use (PEP) is the observed and simulated peak flow rate 
ratio. It can be expressed as a percentage error in the simulated peak (Green and Stephenson 
1986). The high PEP indicates that a model is good at forecasting peak values. PEP is the 
following:

 
PEP =

qps − qpo

qpo
∗ 100 (6)

qps  is simulated peak flow rate and qpo  is an observed peak flow rate.

4 Results

4.1 Whole System

The whole system evaluated the energy use of transporting water from the conveyance 
system to the treatment system to the distribution system. RF model had the highest R2 
(0.677), while the DNN model had the lowest RMSE (1,386,206), MAE (952,885), and 
PEP (-8.30%) in the testing set. DNN was the best performing model as DNN had the three 
best model performance indices (RMSE, MAE, PEP), while RF had the best performance 
index (R2). The combination of DNN and Scenario 4 was the best performing case for the 
whole system (Table 3). Table 3 displays the performance indices for the whole system from 
Scenario 1 to Scenario 4 for training and testing sets.
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4.2 Conveyance System

The main challenge for the conveyance system was capturing and predicting irregular 
energy use patterns in two cases. The first occasion was when the Camanche Reservoir 
released water to fill the low water levels in the terminal reservoirs. Another occasion was 
when the Folsom South Canal Connection released water to service areas during drought. 
Despite these two irregularities that made the energy use pattern inconsistent, the DNN 
model showed outstanding model performance. Among the three machine learning algo-
rithms, the RF model showed the highest R2 (0.774), while the DNN model had the lowest 
RMSE (757,556), MAE (359,303), and PEP (15.9%) in the testing set. The combination of 
DNN with Scenario 2 was the best-performing case for the conveyance system (Table 4). 
Table 4 shows the performance indices for the conveyance system from Scenario 1 to Sce-
nario 4 for training and testing sets.

4.3 Treatment System

Among the three machine learning algorithms, the SVR model showed the highest R2 
(0.859) and PEP (-3.8%), while the DNN model had the lowest RMSE (169,694) and MAE 
(126,722) in the testing set. The SVR model had the two best model performance indices 
(R2, PEP), and the DNN model also had the two best model performance indices (RMSE, 
MAE). The difference in R2 between DNN and SVR was 1.16%, which is marginal. There-
fore, the combination of DNN with Scenario 4 was the best performing case for the treat-
ment system (Table 5). Table 5 shows the performance indices for the treatment system from 
Scenario 1 to Scenario 4 for training and testing sets.

Table 3 The performance indices for the whole system for training and testing sets
Whole system
Machine 
Learning

Scenario Training Testing
R2 RMSE MAE PEP(%) R2 RMSE MAE PEP(%)

MLR S1 0.450 1,542,548 1,106,218 -30.6 0.557 1,336,463 922,091 -33.8
S2 0.495 1,378,833 987,750 -31.6 0.508 1,768,801 1,216,824 -35.5
S3 0.470 1,413,648 1,010,382 -31.9 0.486 1,806,431 1,255,409 -37.8
S4 0.497 1,376,990 987,670 -31.5 0.506 1,770,393 1,204,245 -35.2

RF S1 0.771 1,075,445 839,576 -20.0 0.575 1,336,597 1,031,332 -18.1
S2 0.841 831,638 667,930 -14.5 0.677 1,416,202 982,208 -11.8
S3 0.839 845,990 664,513 -17.1 0.639 1,515,880 1,093,049 -19.0
S4 0.845 829,874 641,899 -19.3 0.664 1,464,269 1,012,304 -20.7

DNN S1 0.817 1,092,233 670,472 -4.4 0.500 1,567,506 952,088 -11.9
S2 0.829 1,055,545 697,790 -28.4 0.515 1,543,475 976,098 -14.3
S3 0.840 1,022,153 698,634 -30.0 0.535 1,510,419 928,367 -13.1
S4 0.938 638,435 392,481 -21.9 0.609 1,386,206 952,885 -8.3

SVR S1 0.509 1,529,373 943,969 -29.5 0.630 1,162,163 924,879 -28.2
S2 0.509 1,469,970 878,375 -32.9 0.415 1,697,739 1,041,907 -35.7
S3 0.473 1,643,877 1,353,171 -26.8 0.514 1,343,831 1,140,952 -0.9
S4 0.484 1,657,578 1,392,292 -30.7 0.526 1,374,669 1,206,161 -26.9
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4.4 Distribution System

The distribution system had a total of 130 pumping plants, a 20-fold greater density of 
pumping plants than the conveyance and treatment systems. This system was more vulner-
able to uncertainties and errors. Among the three machine learning algorithms, the DNN 

Table 4 The performance indices for the conveyance system for training and testing sets
Conveyance system
Machine 
Learning

Scenario Training Testing
R2 RMSE MAE PEP(%) R2 RMSE MAE PEP(%)

MLR S1 0.631 1,006,638 701,351 -28.7 0.617 1,335,128 815,752 -30.4
S2 0.566 1,065,974 727,338 -33.2 0.751 1,141,638 793,532 -33.7
S3 0.562 1,071,553 728,372 -28.3 0.764 1,090,427 774,177 -30.4
S4 0.573 1,057,454 723,333 -31.2 0.743 1,142,990 808,140 -32.9

RF S1 0.776 845,348 643,872 -27.1 0.463 1,590,625 1,073,138 -39.5
S2 0.767 815,413 598,812 -25.8 0.774 1,045,818 825,818 -21.4
S3 0.734 924,438 683,514 -39.1 0.757 1,181,645 958,082 -36.6
S4 0.712 877,065 623,238 -32.5 0.749 1,095,412 792,981 -27.8

DNN S1 0.862 576,774 280,335 -5.6 0.707 776,012 375,018 -10.6
S2 0.874 550,887 255,573 -8.7 0.721 757,556 359,303 15.9
S3 0.870 559,799 276,037 -9.3 0.698 788,057 372,133 18.6
S4 0.865 570,900 281,002 -0.8 0.719 760,264 342,999 -28.9

SVR S1 0.674 1,005,512 605,470 -30.6 0.716 1,036,197 662,740 -23.0
S2 0.774 808,289 456,909 -26.3 0.294 1,771,161 990,931 -20.0
S3 0.743 861,344 519,592 -23.1 0.541 1,528,800 873,585 -23.2
S4 0.764 833,225 482,861 -16.0 0.332 1,780,727 952,618 -65.2

Table 5 The performance indices for the treatment system for training and testing sets
Treatment system
Machine Learning Scenario Training Testing

R2 RMSE MAE PEP(%) R2 RMSE MAE PEP(%)
MLR S1 0.549 296,691 235,770 -16.2 0.740 305,639 247,181 -12.2

S2 0.647 262,547 213,108 -13.8 0.738 305,291 235,694 -11.1
S3 0.596 280,679 224,139 -15.2 0.709 318,555 254,135 -10.5
S4 0.648 261,922 212,945 -13.8 0.732 307,976 237,076 -11.1

RF S1 0.836 186,857 148,615 -12.7 0.797 277,061 221,547 -21.2
S2 0.874 168,097 133,007 -11.6 0.818 280,008 220,774 -22.4
S3 0.866 171,980 135,257 -11.7 0.803 283,706 226,725 -21.6
S4 0.896 150,409 119,639 -11.6 0.768 286,436 228,389 -23.4

DNN S1 0.836 270,152 182,933 -8.2 0.653 257,073 178,929 14.2
S2 0.942 160,742 106,418 -4.8 0.779 205,363 142,608 -3.6
S3 0.928 178,583 126,691 -5.4 0.753 217,061 138,452 -5.0
S4 0.940 162,843 108,884 0.7 0.849 169,694 126,722 -7.3

SVR S1 0.805 204,589 158,682 -1.6 0.745 261,142 196,456 -5.1
S2 0.885 155,150 112,473 -3.1 0.859 207,019 177,179 -3.8
S3 0.848 171,832 129,387 -1.5 0.789 269,818 186,942 -4.8
S4 0.860 165,334 127,682 -3.2 0.782 270,500 195,075 -1.3
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model showed the highest R2 (0.923) and MAE (269,891), while the SVR model had the 
lowest RMSE (386,120), and the RF model had the lowest PEP (-3.33%) in the testing set. 
PEP was a less important factor as the energy use forecasting models’ primary goal was to 
predict the overall energy use, not the peak energy use. The combination of DNN with Sce-
nario 4 was the best-performing case for the distribution system (Table 6). Table 6 shows the 
performance indices for the distribution system from Scenario 1 to Scenario 4 for training 
and testing sets.

4.5 Sensitivity Analysis

Sensitivity analysis investigated the sensitivity of input variables (water supply (t), water 
supply (t-1), temperature (t), population (y), precipitation (t), and precipitation (t-1)) to the 
variations in the final outputs. The water supply (t) (24.9%) and water supply (t-1) (9.28%) 
were the most sensitive independent variables in predicting energy use (dependent vari-
able). Temperature (t) (5.24%), population (t) (4.71%), and precipitation (t-1) were the next 
sensitive variables in order.

5 Discussion

The essential step in the water-energy nexus approach in modeling was to compare the 
results from this study to similar research from the past literature. Having limited similar 
research made it challenging to compare the results from this study to those of other studies. 
We found no comparative research on predicting energy use for the whole or the conveyance 
system. Prior studies have applied machine learning algorithms to simulate the energy use 
for wastewater treatment plants (Bagherzadeh et al. 2021; Das, Kumawat, and Chaturvedi 

Table 6 The performance indices for the distribution system for training and testing sets
Distribution system
Machine Learning Scenario Training Testing

R2 RMSE MAE PEP(%) R2 RMSE MAE PEP(%)
MLR S1 0.758 508,255 412,320 -4.08 0.829 478,915 387,446 -10.80

S2 0.848 407,812 326,029 -5.81 0.771 531,223 404,037 3.12
S3 0.797 471,650 383,173 -6.23 0.734 574,512 440,748 0.99
S4 0.850 404,782 327,375 -5.81 0.762 542,155 424,537 3.18

RF S1 0.832 431,241 348,244 -13.02 0.792 544,544 440,915 -18.35
S2 0.896 350,943 288,305 -8.41 0.762 552,179 403,528 -4.38
S3 0.892 357,541 297,113 -9.56 0.743 570,999 426,118 -4.30
S4 0.920 302,493 246,795 -8.59 0.784 519,199 399,027 -3.33

DNN S1 0.888 427,071 311,739 -1.02 0.878 504,953 357,772 -14.96
S2 0.927 345,748 241,590 -4.84 0.908 438,147 296,591 -7.14
S3 0.899 406,034 282,695 -5.44 0.936 366,610 271,910 -7.47
S4 0.943 305,107 201,265 0.72 0.923 401,397 269,891 -4.86

SVR S1 0.781 479,212 366,382 -8.46 0.866 484,672 409,624 -8.29
S2 0.881 358,390 266,225 -6.72 0.894 386,120 318,847 -9.88
S3 0.837 445,347 319,366 -9.59 0.829 398,512 330,269 -8.91
S4 0.871 396,678 293,254 -6.84 0.872 345,424 282,936 -9.23
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2021; Li and Tang 2021; Zhang et al. 2021) and distribution systems (Antonopoulos and 
Gianniou 2022; Salvino, Gomes, and Bezerra 2022). Prior studies concluded that the ANN 
model was useful in simulating the energy efficiency of the water distribution system (Das, 
Kumawat, and Chaturvedi 2021; Salvino, Gomes, and Bezerra 2022). We also found that 
the DNN model, an ANN model with multiple hidden layers between the input and output 
layers, was the most effective machine learning algorithm in predicting the energy use of 
the water distribution system. Other studies found that the RF model effectively predicted 
energy consumption for wastewater treatment plants (Zhang et al. 2021). We concluded that 
DNN and SVR models performed better than the RF model for the treatment system (in 
the inter-basin water transfer project), which was not the same as the wastewater treatment 
plant.

The machine learning-based models (RF, DNN, and SVR) generated better model per-
formance than the baseline model (MLR) except for RF models in the distribution sys-
tem. In the distribution system, MLR model performed 5.43% (R2), 7.76% (RMSE), 2.90% 
(MAE) better and 69.1% (PEP) worse than RF model. The difference was marginal, and 
we still concluded that machine learning-based models performed better than the baseline 
model (Figs. 4 and 5). Figure 4 is a scatter plot of the observed and predicted energy use on 
a 45-degree reference line. We plotted training and testing sets for the whole and the sub-
systems. However, these scatter plots did not show the model’s performance in predicting 
the overall energy use pattern or the peak energy use. To address this limitation, we plotted 
observed and predicted energy use for the testing set over 30 months (Fig. 5). MLR was a 
simpler model that predicted the dependent variable well and did not require much expertise 
and time to build and analyze. Developing such energy prediction models through multiple 
linear modeling techniques caused certain disadvantages since the behavior of certain inde-
pendent variables for energy consumption was non-linear. Thus, forecasting the energy use 
for the water transfer system through non-linear modeling (RF, DNN, SVR) yielded higher 
model performance indices than linear modeling (MLR).

Among the three non-linear modelings, DNN performed better than RF and SVR. 
Among the four scenarios, Scenario 4 yielded the best in DNN models. A combination of 
DNN and Scenario 4 was the best case for the whole, treatment, and distribution systems 
except for the conveyance system. In the conveyance system, Scenario 2 performed 0.028% 
(R2), 0.35% (RMSE), 4.54% (MAE) and 45% (PEP) better than Scenario 4. Given that the 
differences in R2, RMSE, and MAE between Scenario 2 and Scenario 4 were marginal, we 
concluded that DNN and Scenario 4 were the best combinations for predicting the energy 
use for the Mokelumne River Aqueduct.

The subsystems (conveyance, treatment, and distribution) showed better model perfor-
mance than the whole system. Coincidentally, the energy use increase in one subsystem 
and decrease in another could offset the characteristics and not reflect the model’s results. 
Subsystems reflected their unique energy use characteristics and produced better model 
performance than a whole system. Therefore, predicting the energy use for the subsystems 
was more economically efficient than for the whole system. EBMUD decision-makers and 
operators can predict the energy use for each subsystem and offer energy savings in either 
conveyance, treatment, or distribution systems.

There were some limitations and uncertainties in this study. The overlapping period of 
the water supply and energy use dataset was relatively short. Models training on a small 
number of observations were vulnerable to overfitting and producing inaccurate results. The 
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results showed that R2 is 19.2%, 26.4%, 12.3%, and 5.26% higher in the testing set than the 
training set in MLR for the whole, conveyance, treatment, and distribution system, respec-
tively. A small dataset or the split of training and testing sets were possible reasons behind 
this. The results presented that R2 is 19.2%, 5.87%, and 1.45% higher in the testing set than 
the training set in SVR for the whole, conveyance, and distribution system, respectively. We 
used a relatively simple baseline model and machine learning models with fewer parameters 
to tune to address this limitation and avoid overfitting. We used 10-fold cross-validation to 

Fig. 4 The observed and predicted energy use are plotted against a 45-degree reference line. The first row 
is the whole system, the second row is the conveyance system, the third row is the treatment system, and 
the fourth row is the distribution system. The first two columns are the results of training and testing sets 
from the baseline model (MLR). The third and fourth columns are the results of training and testing sets 
from the best-performing model (DNN).
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avoid underfitting as models use all the data for training or testing and overfitting as all the 
datasets are used in the validation set.

6 Conclusion

This study demonstrated the effectiveness of applying machine learning algorithms to build 
energy use forecasting models for the inter-basin water transfer system and its subsystems. 
RF, DNN, and SVR (non-linear) models were better at reflecting the non-linear characteris-
tics and energy use patterns in the water transfer system than the MLR model (linear). DNN 
models yielded higher model performance indices than RF and SVR models. Subsystems 

Fig. 5 The observed and predicted energy use are plotted for testing set over 30 months. These months do 
not indicate a specific time of the month. The first row is the whole system, the second row is conveyance 
system, the third row is the treatment system, and the fourth row is the distribution system. The first two 
columns are the results of training and testing sets from the baseline model (MLR). The third and fourth 
columns are the results of training and testing sets from the best-performing model (DNN).
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well reflected their unique energy use characteristics and avoided offset from subsystems 
which eventually yielded better model performance than a whole system. The water supply 
(t) and water supply (t-1) were the most sensitive parameters. The best case was having 
water supply (t), water supply (t-1), precipitation (t), temperature (t), and population (y) as 
independent variables to predict energy use, which is a dependent variable. These developed 
models can support water and energy utility managers and planners to understand energy 
performance and enhance energy efficiency for inter-basin water transfer projects. Specifi-
cally, EBMUD decision-makers and operators can use these models to predict the monthly 
energy consumption with projected water supply, precipitation, temperature, and population 
dataset.

Potential future studies include testing different lead times and time resolutions. For 
example, projecting hourly or daily energy use can capture abrupt changes in variables. 
Future studies include developing energy consumption forecasting models using different 
machine learning algorithms for the Mokelumne River Aqueduct or the other inter-basin 
water transfer projects. The Mokelumne River Aqueduct is a case study in this paper to 
illustrate the model by combining a specific jurisdiction with diversity in energy resources 
and deep concerns about water availability.

Forecasting the future energy use behaviors and patterns are essential in proposing 
energy-efficient planning that saves cost, reduces operational risks, and supports better 
decision-making. Energy use forecasting for inter-basin water transfer projects is crucial in 
balancing the electricity supply and demand. Energy use predictions support reliable water 
and energy grid operation and encourage cost-effective operation by improving genera-
tion scheduling. This study serves as an excellent model for future studies that attempt to 
forecast the energy consumption for other energy-intensive water systems and can expand 
for more complex water transfer projects. As EBMUD will benefit from these models in 
understanding energy use for one of the most populous counties in the Bay Area, other 
municipalities and governments can replicate these methods to address energy use in a time 
of rapid global warming, population growth, and economic change.
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