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Summary The standard means of establishing predictive ability in hydrological models is
by finding how well predictions match independent validation data. This matching may not
be particularly good in some situations such as seasonal flow forecasting and the question
arises as to whether a given model has any predictive capacity. A model-independent sig-
nificance test of the presence of predictive ability is proposed through random permuta-
tions of the predicted values. The null hypothesis of no model predictive ability is
accepted if there is a sufficiently high probability that a random reordering of the pre-
dicted values will yield a better fit to the validation data. The test can achieve signifi-
cance even with poor model predictions and its value is for invalidating bad models
rather than verifying good models as suitable for application. Some preliminary applica-
tions suggest that test outcomes will often be similar at the 0.05 level for standard fit
measures using absolute or squared residuals. In addition to hydrological application,
the test may also find use as a base quality control measure for predictive models
generally.

© 2007 Elsevier B.V. All rights reserved.

Introduction

It is usual for hydrological models to be constructed with a
view to having predictive ability for subsequent practical
applications. A necessary condition in this regard is that
the model be shown capable of generating predictions not
too far removed from the values of an independent valida-
tion data set. The model may then be further evaluated
with respect to a range of criteria which depend on the nat-
ure of the model and its area of intended application. Dis-
cussions on the nature of this validation process can be
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found, for example, in Anderson and Bates (2001) and
Hassan (2004). However, there is no point in persevering
with any form of validation when a model has no evident
predictive ability (Beven, 2001). That is, a demonstrated
lack of predictive ability is a sufficient condition for a hydro-
logical model to be invalidated at the initial phase of
investigation.

High levels of predictive ability are usually self-evident
but when prediction ability is questionable there is a need
for a decision framework by which models may be deemed
invalid in the sense of displaying no predictive ability. An
obvious approach in this regard is through hypothesis testing
whereby the null hypothesis of no predictive ability is ac-
cepted or rejected at some significance level on the
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evidence of how well the model has fared against the vali-
dation data. However, despite early recognition for the
need for testing models against invalidation (Bredehoeft
and Konikow, 1993) there is still a need for general hypoth-
esis testing procedures which would allow invalidation test-
ing of complex predictive models (Refsgaard et al., 2005).

Parametric hypothesis testing procedures relating to
model viability include linear regression between observed
and predicted values (Flavelle, 1992), assignment of para-
metric error structures to specific model configurations
(Luis and McLaughlin, 1992) and the factor-of-f test to
check whether model predictions fall within specified confi-
dence internals (Parrish and Smith, 1990). Non-parametric
techniques include the non-parametric equivalent of the
factor-of-f test (Zacharias et al., 1996) and permutation
tests for the specific case of models derived from variable
selection in linear regression (Lindgren et al., 1996).
Zacharias et al., 1996 make mention of non-parametric
hypothesis testing through generating distributions of good-
ness of fit indices by bootstrap resampling. Robinson and
Froese (2004) reference other tests in various contexts
and also make the important point that the usual signifi-
cance tests have the undesirable feature of model non-
invalidation as the default state. They then propose an
alternative approach using equivalence tests by which model
invalidation becomes the null hypothesis.

We present here a particularly simple and general non-
parametric test of invalidation of predictive hydrological
models by defining predictive invalidation in a random per-
mutation sense. That is, a model is deemed to be invalid if
there is an unacceptably high level of probability that ran-
dom pairings of predicted and observed values will yield a
better goodness of fit measure than was obtained from
the original prediction sequence. This is arguably the most
basic of all possible tests of model predictive ability but
to our knowledge this approach has not been previously
advocated in the environmental sciences. The permutation
test is easy to carry out and has the advantage of being inde-
pendent of the nature of the model which generated the
predictions. For example, the predicted values might be ob-
tained as weighted averages of individual predictions from a
number of different non-linear models. A further useful fea-
ture of the test is that the null hypothesis is for model inval-
idation and so avoids the concerns raised by Robinson and
Froese (2004).

Test procedure

It is assumed that an independent validation data set of n
recorded values is available which is representative of the
kind of conditions where the model might be subsequently
applied in a predictive capacity. For each recorded observa-
tion in the validation data there is an associated model-pre-
dicted value and these observed and predicted pairings
collectively yield some numerical fit measure Z, obtained
from a goodness of fit expression. The fit expression is uti-
lised here simply as a means of comparison and Z is not an
estimate of some unknown true value.

A permutation test is then carried out by way of random
pairings of the predicted and observed values. The test can
be applied with any goodness of fit expression, which would

be chosen so as to best detect the validation data matchings
of most interest.

Once an appropriate goodness of fit measure has been
selected for application to the validation data, the test
procedure is to carry out k random permutations of the n
model-predicted values to create k new sets of n observed-
predicted pairings, yielding k simulated goodness of fit
values. The test quantity p is defined as the proportion of
the k simulated fit values which are equal to or better than
Z. '"Equal to or better’’ here denotes either <Z or >Z
depending on whether the fit expression is an increasing
or decreasing function of fit. If it happens that p is unac-
ceptably large (for example, p > 0.05) then the null hypoth-
esis of an invalid predictive model is accepted.

The value of k is determined by the accuracy required for
p, which is a binomial proportion. Given that interest is re-
stricted to p values of 0.05 or less, k = 100,000 will yield p
to an accuracy of at least two decimal places. Obtaining
the k fit values is a simple procedure and requires only a rou-
tine for generating random permutations of the integers
1,2,...,n, which serve as array indices of the n reshuffled
predicted values. For example, the Matlab function RAND-
PERM can be used to generate random integer permutations.

If it happens that the number of observed and predicted
pairings is small, say n < 11, then an alternative approach to
carrying out k random permutations is to explicitly evaluate
fit values for all n! possible orderings of the predicted val-
ues. The p value so obtained is then exact.

Discussion

The outcome of the test is generally not independent of the
selected goodness of fit index. For example, a fit measure
using squared deviations is likely to reflect how well the
model predictions match the more extreme values in the
validation data set, while absolute deviations put more uni-
form weight over the data range. It is therefore possible
that a given validation data set might yield significance
for one goodness of fit measure and non-significance for an-
other. However, if one fit expression is simply an increasing
or decreasing function of another then both expressions will
yield the same test results. A discussion of various fit
expressions and their properties can be found in Legates
and McCabe (1999) and Coffey et al. (2004). Some example
comparisons are given in the next section of test outcomes
using fits raising fit residuals to different powers.

One situation where the test is unlikely to detect an in-
valid model is when a standard goodness of fit measure is
incorrectly applied to validation data with systematic spa-
tial or temporal variation. For example, a time series valida-
tion set might contain a strong seasonal signal and the
model only has to forecast the seasonal means to achieve
high significance in the test. The correct validation data
set here are the residuals from the seasonal means rather
than the recorded data itself. Or, alternatively, a more
appropriate index of fit could be selected which can explic-
itly incorporate seasonal effects (Legates and McCabe,
1999).

The permutation test forces a dichotomy upon a predic-
tive model such that it is deemed to be either invalidated or
not invalidated, as opposed to invalidated or validated. It is



An invalidation test for predictive models

59

entirely possible that highly significant p values will some-
times be associated with validation fits which are too poor
to be of any practical application. This is well illustrated
by noting that the p value is not changed if an arbitrary con-
stant is added to the validation data. Also, near-zero values
of p will be standard in rainfall-runoff models and other sit-
uations where the predicted values tend to be strongly cor-
related. Random permutation in this situation is most
unlikely to generate a random sequence with similar appar-
ent data correlation so the original goodness of fit value is
unlikely to be exceeded. On the other hand, a non-signifi-
cant value of p can be taken as model failure regardless
any form of association between the original predicted val-
ues. We suggest therefore that evaluation of p might be the
first step in the validation process of all environmental pre-
dictive models, recognising that generating near-zero p val-
ues will be a formality for many cases.

The concept of ‘‘model invalidation’’ is somewhat termi-
nal but is always with respect to a given validation data set.
It could happen that a prediction model yields non-signifi-
cant p values only for physical situations producing valida-
tion date sets with certain characteristics. In this case the
test serves as a formal mechanism to limit the range of appli-
cation of the model. Similarly, it would be premature to
deem a model to be invalidated when non-significance arises
because circumstances permit only a small value of n. The
interpretation in this case is rather that the validation data
cannot be given as evidence that the model might be useful.
However, this conclusion could be reversed later if a larger
validation set gives significantly small p values. The alterna-
tive scenario is for p values to remain large as n increases,
showing the predictive model has no evident value.

The invalidation test should find particular application in
poor prediction situations such as seasonal discharge fore-
casting where it might be of scientific interest to determine
whether model prediction capacity is present at all. It might
happen that the test in fact identifies a number of models
with significant p values, providing a starting point for fur-
ther model development with a view to obtaining a final sin-
gle model with best predictive ability.

Another area of possible application could be for valida-
tion subset analysis. For example, a rainfall-runoff model
could have a validation data subset comprised of river flood
peaks above some threshold magnitude. It may be that this
subset yields a non-significant p value despite good fits
being obtained to the flow hydrograph as a whole. This
would have obvious implications if the main purpose of
the model is for flood peak forecasting.

Examples

For illustrative purposes we utilise the coefficient of effi-
ciency as the goodness of fit measure. This can be written
in generic form as (Legates and McCabe, 1999)

2|0 —Piff
Yiil0i = Of

where c is a positive integer. Specifically, we apply (1) to a
selection of examples for the particular case of E;, which is
the form of the coefficient of efficiency involving squared
residuals used in numerous hydrological goodness of fit

E.=10- (1)

evaluations. We then tabulate the effect on p when ¢ takes
on some values other than 2. All p values listed here are
accurate to at least the number of decimal places
indicated.

The first example is derived from a study evaluating the
predictive ability of a range of different hydroclimatic mod-
els for season-ahead river inflow forecasting for Lake Pukaki
in New Zealand. One example where the null hypothesis of
no predictive ability is accepted is shown in the validation
set plotted in Fig. 1. The p value of 0.06 is only just above
the 0.05 significance level and it might be anticipated that
the model rejection could have altered to model accep-
tance if it had not been for the one particularly bad inflow
forecast in 1976. In fact, carrying out the test with 1976 re-
moved makes very little difference with E; reducing slightly
to 0.24 and p remaining at 0.06.

If a larger data set is synthesised by simply repeating this
validation data to give n = 20 then E, remains unchanged at
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Figure 1 Recorded (solid line) and predicted (dashed line)

spring season inflow volumes to Lake Pukaki, New Zealand
(standardised volume units) for a 1972—1981 validation period.
Predicted inflows are obtained from a season-ahead hydrocli-
matic forecasting model.
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Figure 2 Recorded (solid line) and predicted winter inflow
volumes to Lake Pukaki, New Zealand (standardised volume
units) for a 1963—1972 validation period. Predicted inflows are
obtained from a season-ahead hydroclimatic forecasting model.
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0.29 but p reduces to a significantly small value of 0.01. The
enlarged data set is only a contrivance of course and con-
tains no further information, but serves to illustrate the in-
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Well water level below sea level (metres)
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Figure 3 Time series of recorded (solid line) and predicted

water levels during pumping from a coastal well near Whanga-
mata, New Zealand.
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Figure 4 Four-year daily discharge validation data set for
peak flood discharges on the Tarawera River, New Zealand.
Arrows indicate 12 flood peaks exceeding 50 m* s~ and crosses
are rainfall-runoff model predictions of the discharge peaks.
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Figure 5 Recorded (solid line) and predicted discharges for

the 12 flood peaks of Fig. 4, plotted in time order.

creased power of the test to detect predictive ability as n
increases.

Fig. 2 shows a different seasonal inflow forecasting mod-
el applied to a different validation period where the p value
of 0.02 indicates the null hypothesis of no predictive ability
is rejected at the 5% level.

Fig. 3 illustrates a validation example for well water le-
vel predictions derived from an empirical regression-based
model based on well pumping rates. It is evident that the
predictive model is not particularly helpful in this case be-
cause the negative value of E; means that the observation
mean value gives a better prediction than the model. The
p value of 0.006 is nonetheless highly significant as a conse-
quence of similarities between the patterns of the observed
and predicted time series. This would give encouragement
to persevere with the regression model and hopefully intro-
duce further terms which improve the goodness of fit.

Fig. 4 shows four years of daily flow record from the
Tarawera River, New Zealand. This serves as the validation
data of a class exercise evaluating the application of a spe-
cific rainfall-runoff model (Bardsley and Liu, 2003). The dai-
ly predicted values are not plotted for the sake of clarity,
but the high degree of temporal correlation resulted in none
of 100,000 random permutations exceeding the original cal-
culated E; fit value of 0.55. This situation will be common to
many rainfall-runoff model validations and raises the ques-
tion of how p should be reported, since specifying p =0 is
incorrect. We suggest instead presenting the upper 95%
upper confidence bound to p whenever k random permuta-
tions yield no goodness of fit values better than the original.
That is, an upper bound to p is given as (Louis, 1981)

p<1-005"* (2)

For example, 100,000 randomisations with zero better fits
gives p<0.3x107%,

The test is likely to provide more interesting results for
rainfall-runoff models when checking the ability of a model
to predict uncorrelated magnitudes of high or low flow ex-
tremes. For example, Fig. 4 also plots the predicted values
of the recorded 12 flood peaks which exceed 50 m® s~ over
the four years (plotted separately in Fig. 5 as a time se-
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Figure 6 Recorded (solid) and predicted mean annual dis-

charges for Tangnaihai Station on the upper Yellow River
(China). Predicted values are obtained from a composite GCLM
and SWAT model.



An invalidation test for predictive models 61
Table 1 Selected E. fit values applied to the example data sets, with corresponding p values in brackets
1] [2] [3] [4] [3] (6]
Eos 0.08 (0.09) 0.08 (0.09) 0.13 (0.03) —0.13 (0.003) —0.38 (0.14) —0.07 (0.23)
E; 0.16 (0.07) 0.14 (0.07) 0.26 (0.02) —0.39 (0.003) —0.49 (0.03) —0.25 (0.20)
E; 0.29 (0.06) 0.24 (0.06) 0.59 (0.02) —1.2 (0.006) —0.39 (0.01) —0.57 (0.12)
Es 0.40 (0.07) 0.38 (0.05) 0.83 (0.02) —2.6 (0.013) —0.17 (0.004) —0.68 (0.10)

[1] From data of Fig. 1; [2] from data of Fig. 1 excluding the 1976 year; [3] from data of Fig. 2; [4] from data of Fig. 3; [5] from data of

Fig. 5; [6] from data of Fig. 6.

quence). For this subset of validation data the model is
evidently not particularly helpful because it tends to un-
der-predict the flood peaks and gives a negative value of
E;. However, the low p value of 0.01 suggests the model
has captured some aspects of the flood generation process
and could perhaps be further developed.

The final example illustrates the use of the test as a
check on the extent to which a small validation data set
can be presented as evidence in support of a predictive
model. In this context, Fig. 6 shows the validation data
(n = 4) of a global climatic model coupled with a SWAT mod-
el to give predictions of mean annual flow on the upper Yel-
low River (Xu and Zhao, 2006). Applying the test, the
resulting p value of 0.12 is in fact not sufficiently small to
confirm predictive ability but might be considered small en-
ough to encourage putting together a larger validation data
set as a more rigorous check of the model. There is also
need to improve the model’s low fit value.

All the examples considered here have been based on the
single goodness of fit statistic E; and the question arises as to
how p might vary for different fit measures. As mentioned
earlier, different fit measures emphasise different data fit
aspects so some validation sets will result in greater differ-
ences among the p values than others. A full investigation
is left for further work but a preliminary indication of p var-
iation is given in Table 1, which shows the p values in the
examples of this paper for the fit measures Ey s, E1, and Es.
It is not implied that indices like Ey 5 or E3 should ever be
used as practical fit measures but it is of interest to see
how p may change over this range. It is encouraging to note
that at the 0.05 significance level the test conclusions would
remain unchanged for both E; and E; and the associated p
values tend to be similar. However, this evident robustness
of the p values needs confirmation by subsequent application
to a range of validation data sets. The greater difference in
the square root and third power of the absolute residuals in
Eo.5 and E5 tends to give rise to some larger differences be-
tween their respective p values.

Conclusion

Random permutation of model-generated predicted values
provides a simple and general means for testing the null
hypothesis of a model’s inability to predict a validation data
set. The permutation test is a simple acceptance/rejection
procedure and further investigation would be required for
possible explanations as to why the test gave a particular
outcome. The test is likely to find most application in
exploratory analysis seeking to identify models which hold
some promise of predictive ability in situations were

accurate prediction is inherently difficult. The test could
also be used as part of a standard statement of quality con-
trol for predictive models in general, with strong rejection
of the null hypothesis expected to be the norm for models
with reasonable predictive capability over large validation
data sets.
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