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Abstract 

Balancing ecological and human water needs often requires characterizing key aspects of the 
natural flow regime and then predicting ecological response to flow alterations. Flow metrics are 
generally relied upon to characterize long-term average statistical properties of the natural flow 
regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline 
conditions may be better understood through more complete consideration of continuous patterns 
of daily, seasonal, and inter-annual variability versus summary metrics. Here, we propose the 
additional use of high-resolution dimensionless archetypes of regional stream classes to improve 
understanding of baseline hydrologic conditions and inform regional environmental flows 
assessments. In an application to California, we describe the development and analysis of 
hydrologic baseline archetypes to characterize patterns of flow variability within and between 
stream classes. We then assess the utility of archetypes to provide context for common flow 
metrics and improve understanding of linkages between aquatic patterns and processes and their 
hydrologic controls . Results indicate that these archetypes may offer a distinct and 
complementary tool for researching mechanistic flow-ecology relationships, assessing regional 
patterns for streamflow management, or understanding impacts of changing climate.  

 

1. Introduction  
Managing altered hydrology is a common challenge worldwide in terms of protecting 

sensitive biological communities (Poff et al. 2010; Bunn and Arthington 2002; Poff and 
Zimmerman 2010) and balancing the needs of ecological and human water uses (Lane et al. 
2014; Postel 2004). Relationships between flow alteration and ecological characteristics for 
different natural hydrologic regimes, or stream classes, constitute a key element linking the 
hydrologic, ecological and social aspects of environmental flow assessment (Poff et al. 2010). A 
critical step in developing these relationships at the regional scale is to identify the degree of 
hydrologic alteration. This is accomplished by comparing existing (or anticipated future) 
conditions to a reference condition, or hydrologic baseline, often represented by minimally 
impacted (e.g., historic) conditions. The hydrologic baseline of a stream class is defined here as 
the (20th century) unimpaired continuous inter- and intra-annual streamflow patterns 
characteristic for that region and stream class.   

Hydrologic classification is a common approach for distinguishing regional hydrologic 
baselines (Olden et al. 2012). Many such classifications have been developed within the United  
States (Reidy Liermann et al. 2012; Leibowitz et al. 2016; Wolock et al. 2004) and worldwide 
(Kennard et al. 2010; Brown et al. 2014b), reflecting an increasing desire to organize and manage 
complex, highly altered riverscapes to maintain ecosystem integrity. Existing classification 
systems generally organize natural streamflow patterns by identifying similar streams according 
to a set of diagnostic flow metrics When combined with landscape analysis, hydrologic 
classification can provide a spatially explicit understanding of natural hydrologic variation 
among streams within and between regions (Wagener 2007). Robust hydrologic classification is 
expected to improve the development of flow-ecology relationships by reducing the noise in 
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relational models associated with normal landscape variability. Different hydrologic baselines 
(i.e., for different stream classes) are expected to respond differently to flow alteration  
(i.e., they may be more or less sensitive to different forms of alteration), thus providing spatially 
discontinuous groups of stream reaches that can be managed similarly. In addition to distinguishing 
dominant hydrologic regimes through classification, establishing regional hydrologic baselines for 
environmental flows assessments requires subsequent characterization of each hydrologic regime.   

Flow metrics are generally relied upon to both distinguish stream classes and then 
characterize the hydrologic regimes of each class (Poff and Allan 1995 ; Arthington 2006; 
Richter 1996). Describing statistical properties related to the magnitude, frequency, duration, 
timing, and rate of change of streamflow, flow metrics are generally calculated directly from 
unimpaired flow records (Poff et al. 1997),modelled using watershed attributes (Eng et al. 2017; 
Parajka et al. 2013), or estimated using flow data from nearby gages (Sawicz et al. 2011). 
Metrics are generally selected for their presumed ecological relevance (Olden et al. 2012) or 
utility for particular environmental management end-goals (Olden and Poff 2003). For example, 
in two distinct hydrologic classifications of California, Pyne et al. (2017) sought to inform the 
ecological limits of alteration while Lane et al. (2017) sought to characterize patterns of 
variability. Towards these distinct end-goals, Pyne et al. (2017) considered average and extreme 
flow conditions for their established sensitivity to human alteration while Lane et al. (2017) 
focused on variability-driven metrics such as median monthly flow and high flow timing to 
distinguish distinct seasonal and inter-annual patterns thought to be relevant to native biota. 
These contrasting classifications demonstrates how a priori selection of flow metrics for 
characterizing baseline conditions is influenced by application end-goals (Olden et al. 2012). 
Further, neither set of metrics provides a continuouscharacterization of hydrologic baseline 
conditions capable of capturing the full suite of hydrologic drivers influencing ecosystem 
response.   

Some drivers of ecosystem response may be better understood through more complete 
consideration of continuous, high-resolution streamflow patterns (Stewart-Koster et al. 2014). 
Patterns of hydrologic variability, responding to different annual, seasonal, and storm-event scale 
climate drivers, are layered together to create complex flow regimes that promote variability in 
channel habitats (Beechie et al. 2010) and contribute to long-term ecological diversity (Naiman 
et al. 2008). In Mediterranean-montane climates for example, native species are highly adapted 
to the annually recurring patterns of high and low flows (Lytle and Poff 2004; Gasith and Resh 
1999). Differences in the transition from winter flood flows to summer low flows in terms of 
seasonal predictability (i.e. inter-annual variability) and flashiness between stream have major 
implications for the life-history strategies of native species. For example, the predictable spring 
snowmelt recession in mid-elevation snowmelt-driven streams creates favorable habitat 
conditions and distinct hydrologic cues for spawning and migration of native species (Yarnell et 
al. 2010). Yet few standard flow metrics capture the sub-seasonal variability patterns specific to 
this crucial transition period. Those metrics that do describe critical sub-seasonal patterns are 
often poorly predicted, limiting their utility at ungaged locations (Eng et al. 2017). We 
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hypothesize that consideration of continuous, daily patterns of variability at multiple temporal 
scales, in addition to flow metrics, will inform the development of stronger linkages with key 
ecological cues and processes.   

In this paper, we propose the additional use of daily-scale hydrologic baseline archetypes as 
an alternative and complementary approach that allows researchers to more objectively move 
between conceptual models of hydrology – ecology relationships, flow metrics, and management 
applications. Cullum et al. (2017) define an archetype as “a conceptualization of an entire 
category or class of objects. Archetypes can be framed as abstract exemplars of classes, 
conceptual models linking form and process and/or tacit mental models similar to those used by 
field scientists to identify and describe landforms, soils and/or units of vegetation.” Most 
importantly, an archetype is more than an abstraction of indices, but is a complete realization of 
an entity. The use of archetypes is well established in hydrology, geomorphology, and biology 
(McCuen 1989; Parasiewicz et al. 2008; Brown et al. 2014a), but is not common in the 
ecohydrology literature.   

There are several common techniques for generating hydrologic archetypes, reflecting the 
rich body of literature on synthetic hydrology (Salas 1993), scaling (Blöschl and Sivapalan 1995; 
Blöschl 2001), and prediction at ungauged basins (Sivapalan 2003), that would be of significant 
benefit for use in ecohydrology. These techniques involve different levels of complexity, data 
availability, and applicability, but generally fall into two categories: process-based deterministic 
watershed models and hydrostatistical approaches (Farmer and Vogel 2013). Watershed 
modeling is beyond the scope of this study; for a review of regional watershed modeling 
approaches, see He et al. (2011). Within hydrostatistical approaches, methods range from 
statistical scaling techniques and fitted probability density function models to more advanced 
techniques such as autoregressive integrated moving average (ARIMA) models, Fourier analysis 
(e.g., Pasternack and Hinnov 2003), and wavelets (e.g., Smith et al. 1998; Lundquist and Cayan 
2002). Within scaling techniques, streamflow time series can be scaled to represent conditions at 
different locations or under changing physical controls (e.g., climate change) using scaling 
variables such as drainage area (Asquith et al. 2006), flow duration curves (Archfield et al. 
2007), and average annual flow (Mierau et al. 2017; Farmer and Vogel 2013). Methods that 
nondimensionalize time series, such as scaling by average annual flow (Yang et al. 2016; 
Sanborn and Bledsoe 2006; Haines et al. 1988), are particularly useful for establishing baselines, 
as they improve comparability and hydrologic information transfer across watersheds, regions, 
storms, etc. [e.g., the dimensionless unit hydrograph for a specific watershed (Bender and 
Roberson 1961)].  

To address the need to establish ecologically relevant hydrologic baselines for the State of 
California, we propose the development of daily time-step, archetypal dimensionless reference 
hydrographs (DRHs) in addition to continued use of flow metrics for quantifying stream class 
hydrologic baselines. DRHs refer to unimpaired daily streamflow time series 
nondimensionalized by average annual flow. Once many reference hydrographs are 
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nondimensionalized, subsets of reference gages representing a single stream class can be 
analyzed together by aggregating their DRHs to create a stream class DRH archetype spanning a 
water year. Stream class DRH archetypes can then be used to quantify and compare inter-annual, 
seasonal, and daily variability patterns within and between stream classes. DRHs characterize the 
statistical signature and within-class variability of a distinct stream class, but also provide 
continuous multi-scale information, thus representing a simple, high-resolution hydrologic 
archetype. In this manner, we expect DRHs to provide context for the selected flow metrics, 
allowing for connections and relationships between various metrics to be made, thus creating a 
more complete understanding of flow patterns than the individual metrics alone.  

The overall goal of this study is to generate baseline hydrologic archetypes of regional stream 
classes for California and outline a framework for using these archetypes to inform flow – 
ecology linkages in support of regional environmental flows assessment. To accomplish this, the 
specific study objectives are to (1) reconcile two existing hydrologic classifications for  
California into a single classification using a scientifically defensible reconciliation approach, (2) 
characterize the resulting stream classes using traditional flow metrics, (3) generate stream class 
DRH archetypes, (4) characterize the stream classes using the generated DRH archetypes, and (5) 
evaluate their utility for revealing ecologically significant streamflow patterns. We expect that 
hydrologic baseline archetypes will provide additional information not available from traditional 
flow metrics to support process driven analysis of regional streamflow patterns and inform flow - 
ecology relationships in broad heterogeneous landscapes.  

2. Methodology  
2.1. Reconciliation of two regional hydrologic classifications  

The first phase of this study involved reconciling two existing hydrologic classification 
systems of the State of California in order to provide a single consensus classification system. 
These two efforts (Pyne et al. 2017; Lane et al. 2017) addressed different water management 
objectives, yet arrived at similar, though not totally identical, results. The similarities attest to the 
resilience of the underlying data in providing a clear signal that drove convergent outcomes. See 
the Supplemental Materials for detailed descriptions of the final classification system.  

The reconciliation process consisted of three steps (Figure 1). First, classification 
geodatabases were merged to identify subregions of agreement and disagreement (Step 1); 
subregions with disagreements were then resolved through the proposed workflow (Steps 2 and 
3). Analysis found that there were 3 major subregions of disagreement, totaling 221,000 km2, 
while the remainder of California (203,000 km2) was generally in agreement. As the Lane et al. 
(2017) classification provided a more detailed characterization of seasonal and inter-annual 
hydrologic variability [both aspects of the unimpaired hydrologic regime with well-established 
ecological significance (Poff et al. 1997)], it was selected as the default classification in 
subregions of agreement in this study.  
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Step 2 (Figure 1) assessed the number of reference gages each classification study had in a 
subregion of disagreement. There were three possible outcomes: the Pyne et al. (2017) 
classification could have (a) fewer, (b) a similar number, or (c) more reference gages than the 
Lane et al. (2017a) classification in the subregions of disagreement. In step 3, different rules 
were used for reconciliation under each of the three possible outcomes (Figure 1). If there were 
fewer Pyne et al. (2017) reference gages in a subregion of disagreement, then it was deemed 
insufficient to warrant creation of a distinct class and the default stream class of Lane et al. 
(2017) was retained. If there were sufficiently more (>10) reference gages in one subregion 
where the two classification systems differed in outcome, then it was concluded that there was a 
reasonable basis to adopt the Pyne et al. (2017) classification, and the additional stream class was 
incorporated into the reconciled system. Finally, if reference gage quantity and distribution were 
similar in a subregion of disagreement (Figure 1, outcome b), the hydrologic and physical 
attributes of the conflicting stream classes were further evaluated to determine if the physical 
basis and/or statistical patterns were distinct enough to warrant splitting. If the physical 
distinction was sufficient, the stream classes were split into a sub-class of Lane et al. (2017a) and 
a sub-class of Pyne et al. (2017). Otherwise, the Lane et al. (2017) stream class was retained.  

 

 
Figure 1. Proposed workflow for reconciling the regional hydrologic classifications by Lane et al. (2017) (L) and 

Pyne et al. (2017) (P). 

Statistical distinctions between the resulting stream classes were evaluated using the 
Wilcoxon signed-rank test (Wilcoxon 1945) and the matched-paired sign test (Helsel and Hirsch 
1992).  The un-paired signed-rank statistical test evaluates the overall population of flow data as 
without consideration for the timing or daily variations. Alternatively, the non-parametric 
matched-paired test can be used to compare paired time series data regardless of their probability 
density function.  
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2.2. Traditional hydrologic baseline characterization  

Thirty-four common flow metrics were calculated, representing a non-redundant 
ecologically-significant distillation of a much larger set of metrics that includes daily, monthly, 
and annual variability metrics (Konrad et al. 2008). These metrics were calculated for each 
reference gauge and results evaluated across stream classes. This analysis was intended to 
illustrate a common use of flow metrics which is to select a pre-determined set of metrics 
considered in the literature to reflect the attributes described above.  

 
2.3. Dimensionless reference hydrographs (DRHs)  

2.3.1. Stream class DRH generation  

While archetypes as a whole are useful, an important challenge is to define archetypes that 
are not specific to a single site; hence the notion of a DRH that is representative for many 
different stream reaches across a region that receive different absolute amounts of rainfall. To 
develop DRHs for each stream class, daily streamflow time series from available reference 
gauges were first non-dimensionalized by dividing each daily flow value by the average daily 
flow for that water year. This step was performed for each Julian date of each year over a 20year 
period from 1968-1988 or 1989-2009, depending on data availability. This period of record was 
selected to be consistent with the analysis by Lane et al. (2017). Next, the 10th, 25th, 50th, 75th, 
and 90th percentile dimensionless flows were calculated for each Julian date across the 20year 
period. This process was completed for each reference gauge, and then the same percentiles were 
calculated across all gauge stations in a stream class. For example, the 25th percentile 
dimensionless flow for October 1 was calculated across 20 years of data for all 25 reference 
gauges in the snowmelt stream class for a total sample size of 500 for that Julian date in that 
stream class. The 50th percentile stream class DRH generated through this workflow is then the 
median hydrologic baseline archetype.  

It should be noted that limitations in reference streamflow data may have a major impact on 
the characterization of natural baselines. In California, there has been over 200 years of land use 
change as well as natural multi-decadal periods of wetter and drier conditions (Guinn 1890). In 
other parts of the world, human alterations to flow regimes could span thousands of years. Thus, 
these recent periods likely do not reflect the full range of natural hydrologic variability, but they 
represent the best data we have and enable methodological developments. On the positive side, a 
previous trend analysis of climate non-stationarity (Kendall 1975) and autocorrelation (Durbin 
and Watson 1950) in the streamflow records from 1968-1988 supported the use of selected 
streamflow records (Lane et al. 2017).  

2.3.2. DRH based hydrologic regime characterization   

The stream class DRHs were then used to characterize the reconciled stream classes based on 
aspects of inter-annual, seasonal, and daily flow variability expected to augment information 
obtained from traditional flow metrics. Specifically, the DRHs characterized the following 



 

8  
  

hydrologic baselines attributes for nine regional stream classes (Figure 2): (i) long-term average 
daily flow patterns, (ii) long-term average patterns of inter-annual variability, (iii) seasonal 
patterns of daily and inter-annual variability, (iv) daily patterns of variability, and (v) seasonal 
timing patterns. This set of analyses is not meant to be comprehensive, but rather to highlight a 
few key aspects of hydrologic baselines that may not be well represented by flow metrics.  

  
Figure 2. Archetypal hydrologic baseline attributes extracted from stream class DRHs: (i) long-term average daily 
streamflow patterns, (ii) long-term average patterns of inter-annual variability, (iii) seasonal patterns of daily and 
inter-annual variability, (iv) daily patterns of variability, and (v) timing of key hydrologic conditions.  

  
 (i)  Long-term average daily flow patterns   

Pairwise comparisons of the median stream class DRH time series (red line in Figure 2) 
based on R2 values allowed for simultaneously comparison of temporal and spatial variability 
patterns within and between stream classes. The median stream class DRH value for a single 
Julian date represents the median dimensionless daily flow (as a multiple of average annual 
flow) across all gage - years in that stream class.  

 (ii)  Long-term average patterns of inter-annual variability  

Pairwise stream class comparisons of the 10th, 50th and 90th percentile DRH time series 
based on R2 values were then used to compare stream classes across low, average, and high 
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flows, respectively, for the eight most highly correlated stream class pairs based on the 
previous analysis (i).   

 (iii)  Seasonal patterns of daily and inter-annual variability  

The interquartile range (75th - 25th percentile, IQR) of daily streamflow values was 
evaluated for each stream class both over a water year (Oct 1 - Sept 30) and in each season: 
fall (Sep 15 - Nov 30), winter (Dec 1 - Feb 28), spring (Mar 1 - Jun 30), and summer (Jul 1 - 
Sep 15). The stream class IQR for a single Julian date captures the inter-annual variability of 
flow on that date across all stream class reference gages. It is therefore a dual measure of 
temporal and spatial variability in daily flows. In each stream class, these daily IQR values 
were calculated across seasons to assess seasonal differences in daily variability. Finally, 
these seasonal patterns were compared across stream classes.   

(iv)     Daily patterns of variability   

Daily IQR was then evaluated directly to investigate stream class specific patterns of 
interannual variability not distinguishable at the annual or seasonal scale.  
  

 (v)  Seasonal timing patterns  

Finally, key seasonal timing attributes were extracted from stream class DRHs, including 
the date of the center of mass of annual flow and the date of the peak of the wet season. The 
center of mass date was defined as the median date of peak flow events (defined as periods 
when the 90th percentile dimensionless daily flow value >4, representing flows 4 times 
greater than annual average conditions). The peak wet season date was defined as the date of 
occurrence of the maximum value of the 50th percentile stream class DRH.  

 
3. Results  

3.1. Final reconciled hydrologic classification  

3.1.1. Reconciling overlapping classifications  

Many subregions of agreement were identified between the two hydrologic classifications, 
including Snowmelt (SM) and Low-volume Snowmelt and Rain (LSR) in southern California, as 
named in Lane et al. (2017) (Figure 3). Stream classes with higher agreement were generally 
elevation-controlled, highlighting elevation as a primary control on streamflow response in 
California. The strong similarities between the classifications likely reflect the fact that both 
efforts based their work on first-principles of the interaction of climate, topography, and geology 
on hydrologic patterns.  
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Figure 3. Regions of major differences between the two California hydrologic classifications include the A. Modoc 
Plateau, B. Mohave, and C. North Coast regions overlaid by reference gauges used for each classification.  

Three subregions in particular (circled in Figure 3) exhibited striking differences between the 
classifications (Figure 3) that were explicitly addressed through the reconciliation workflow 
(Figure 1): (a) the Modoc Plateau, (b) the Mohave Desert, and (c) the North Coast. The Modoc 
Plateau subregion in northeastern California was distinguished by Pyne et al. (2017) for its 
unique combination of high elevation and low precipitation. Because Pyne et al. (2017) had more 
reference gages in this region (Figure 3), the Pyne et al. (2017) Modoc stream class was selected 
as the default in that area and incorporated into the final classification (Figure 3, outcome c). 
Similarly, all Lane et al. (2017) Rain and seasonal Groundwater (RGW) reaches within the 
Mohave (Figure 3) were changed to Pyne et al. (2017) Flashy Ephemeral Rain (FER) class in 
areas that overlapped with Pyne et al. (2017)’s Class 5 (Figure 3, outcome c). The FER class was 
applied here rather than creating a new stream class because FER and Class 5 exhibit very 
similar hydrologic conditions, and FER stream reaches already exist in other locations in the 
state. Lane et al. (2017)) distinguished two stream classes for the North Coast (Figure 3), the 
low-volume snowmelt and rain (LSR) and winter storm driven (WS) northwest coast region, 
while Pyne et al. (2017) only distinguished one class very similar to WS. In this case, since the 
number of reference gages in this subregion was similar across classifications, the hydrologic and 
physical attributes of the conflicting stream classes were then evaluated to determine if the 
physical basis and/or statistical patterns were different enough to warrant splitting (Figure 3, 
outcome b). The evident differences in the seasonal hydrologic patterns and dominant water 
sources were used to justify the split between LSR and WS. Specifically, LSR streams exhibited 
far greater snowmelt influence including a predictable snowmelt recession in late spring while 
WS streams had their center of mass of flow in winter with highly unpredictable winter 
stormdriven high flows dominating the hydrograph.  
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3.1.2. Final unified hydrologic classification  
The reconciliation process generated a consensus classification consisting of nine stream 

classes, including classes from each of the two independent efforts (Figure 4). These stream 
classes represent distinct hydrologic landscapes, with distinct flow patterns, flow sources, 
hydrologic characteristics, and catchment controls over rainfall-runoff response (Wigington  
2012). Results include an attributed NHD-plus stream network of the State of California (Figure 
4), the stream length distribution by class, and a table summarizing major hydrologic and 
geospatial variables identified as significant for each stream class (see Supplemental Materials).   

  
Figure 4. Final reconciled hydrologic classification for the State of California distinguishing nine stream classes.  

The matched-paired sign test (Helsel and Hirsch 1992) based on pairwise comparisons of 50th 
percentile stream class DRH time-series indicated that each stream class was statistically distinct 
(α<0.05) (Table 1). In contrast, the un-paired Wilcoxon rank-sum test (Wilcoxon 1945) only 
identified a subset of stream classes (86%) as being statistically distinct whereas other paired 
stream classes were not (e.g. SM-LSR, RGW-WS, RGW-PGR, WS-PGR and WS-FER). The 
unpaired rank-sum test, like many flow metrics, evaluates the overall population of streamflow 
data as a whole without considering daily timing. The fact that the paired statistical test was able 
to distinguish statistically significant hydrologic differences that the un-paired test was not is a 
testament to the importance of daily scale variability patterns often not captured by long-term 
averaged flow metrics.   
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Table 1. P-values from the matched-paired sign test (bold) indicate that all stream classes are statistically distinct (α<0.05), 
while results from the un-paired Wilcoxon rank-sum test (italics) identify fewer stream class distinctions (shaded cells indicate 
pvalues that are not statistically significant). These results demonstrate the importance of daily streamflow time series for 
characterizing significant aspects of hydrologic variability.  
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3.2. Traditional hydrologic baseline characterization  

An evaluation of stream class hydrology based on 34 common flow metrics (from Konrad et al. 
2008) yielded some general differences between stream classes (Figure 5 and Supplemental 
Materials Figure 4 and Table 3). For example, snowmelt streams exhibited the most predictable 
flow patterns overall as indicated by tight clustering of gages (e.g., MaxMonth, MinMonth, RBI, 
HighDur), lowest flashiness (RBI), few high flow events (HighNum), and shorter low flow 
durations (LowDur) (Figure 5). In contrast, flashy ephemeral streams exhibited unpredictable 
conditions, particularly in the duration of low flows (lowDur), the highest (MaxMonth) and 
lowest (MinMonth) flow months, and hydroperiod. They also exhibited high daily flow 
variability (RBI, PDC, BFR), many no (MediandNoFlowDays) and low (Per_LowFlow) flow 
days, and lower average flows (Qmean, Qmed) than other stream classes. Stream class RBI 
comparisons in particular distinguished broad-scale differences in flashiness, ranging from an 
average of 0.06 in High elevation Low Precipitation (HLP) streams to 0.55 in Flashy Ephemeral 
Rain (FER) streams. By contrast, Low-volume Snowmelt and Rain (LSR) and Winter Storm 
(WS) streams exhibited highly overlapping flow metric values. While WS streams generally 
exhibited less spread than LSR streams, only MinMonth and HighDur clearly distinguished WS 
streams due to the much tighter clustering. It should also be noted that for two classes, 
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Groundwater (GW) and High elevation Low Precipitation (HLP), the low number of reference 
gauges made it difficult to discern any clear patterns.   

  
Figure 5. Four common flow metrics (from a set of 32 flow metrics from Konrad et al. (2008)) calculated for each 

reference gage in each stream class including: number of high flow events (HighNum), low flow duration 
(LowDur), average annual flow (Qmean) and flashiness (RBI).  

While broad differences were evident using the 34 flow metrics alone, limited information 
content and substantial spread made interpretation difficult for all but the most distinctive stream 
classes and metrics. While other metrics not considered here may have better captured the 
patterns of variability that happened to be most distinctive among these stream classes, no 
comparison of variability patterns across time-scales was possible because metrics were all 
calculated over some population of streamflow data (e.g., period of record, monthly) rather than 
retaining daily timing attributes. We expect that combining flow metric assessment as described 
above with continuous hydrologic baseline archetypes provided by the stream class DRHs will 
provide more context for these metric values and result in a more complete understanding of the 
flow patterns than any limited set of metrics alone.  

3.3.1. Final DRHs of reconciled stream classes  

Dimensionless hydrologic baseline archetypes, or stream class DRHs, simultaneously 
illustrated inter- and intra-annual streamflow patterns at a daily resolution. Dimensionless daily 
streamflow, representing the number of times greater any daily flow value is than average annual 
flow in that water year, varied substantially across seasons and stream classes (Fig. 6). For 
example, the 90th percentile DRH (upper dark blue lines in Figure 6) was five times average 
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annual flow in Snowmelt (SM) but surpassed 18 times average annual flow in Winter Storms 
(WS). These results indicate that inter-annual flow variability can be much greater in WS than 
SM reaches. The seasonal patterns also differed substantially between these two classes. Across 
SM streams, as illustrated by the stream class DRH, the vast majority of flow occurs over a short 
period in late spring (75% of annual streamflow Mar - Jul), while in the WS streams high flows 
occur over an extended duration during winter (68% of annual streamflow Dec – Mar) (Fig. 6).   

  
Figure 6. Dimensionless reference hydrographs (DRHs) of the nine reconciled stream classes identified in  

California: Snowmelt (SM), Low-volume snowmelt and rain (LSR), High-volume snowmelt and rain (HSR), Winter 
storms (WS), Rain and seasonal groundwater (RGW), Groundwater (GW), Perennial groundwater and rain (PGR), 

Flashy ephemeral rain (FER), High elevation low precipitation (HLP).  

These hydrologic baseline archetypes promote a process-driven understanding of these 
stream classes that augments the information gleaned from flow metrics. Winter Storm streams 
are shown to exhibit unpredictable winter high flows driven by winter rain storms and extended 
extreme low flows in the summer [average median September streamflow 33 cfs; average base 
flow index 0.01], while Snowmelt streams exhibit highly predictable spring snowmelt recession 
patterns (i.e., low inter-annual variability and short timing window) (Lane et al. 2017). The 
Lowvolume Snowmelt and Rain DRH illustrates the combined signature of both the Snowmelt 
and Winter Storm archetypes, with an evident snowmelt recession associated with limited flow 
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variance (10th to 90th percentile flow difference <1) as well as a large, extended mass of flow 
with higher variability (up to 5 time average annual flow) during the winter (Figure 6).   

3.3.2.  DRH based hydrologic regime characterization   

Statistical analysis of stream class DRHs revealed distinctive aspects of hydrologic baselines 
including: long-term average daily streamflow patterns, long-term average patterns of interannual 
variability, seasonal patterns of inter-annual variability, daily patterns of variability, and seasonal 
timing patterns.  

 (i)  Long-term average daily flow patterns  

The pairwise comparisons of median stream class DRHs exhibited a range of R2 values 
ranging from 0 to 0.95, indicating that some stream classes were much more similar than others 
(Table 2). Snowmelt and High-elevation Low Precipitation were the most similar stream classes 
based on this index (R2=0.95), followed by Perennial Groundwater and Rain (PGR) and Flashy 
Ephemeral Rain (FER) (R2=0.80) and PGR and Groundwater (GW) (R2=0.78). Interestingly, 
FER and GW were far less similar (R2=0.66), confirming that PPGR represents a combination of 
end-member patterns.  

Table 2. R2 values of pairwise stream class comparisons for 50th percentile DRH time series. Bolded values indicate eight 
most highly correlated stream class pairs. Stream classes are as follows: Snowmelt (SM), Low-volume snowmelt and rain (LSR), 
High-volume snowmelt and rain (HSR), Winter storms (WS), Rain and seasonal groundwater (RGW), Groundwater (GW), 
Perennial groundwater and rain (PGR), Flashy ephemeral rain (FER), High elevation low precipitation (HLP).  

  
SM  

HSR  
LSR  

RGW  
WS  
GW  

PGR 
FER 
HLP  

 SM  HSR  LSR  RGW  WS  GW  PGR  FER  HLP  
  

 (ii)  Long-term average patterns of inter-annual variability  

Further comparison of low and high flow patterns (the 10th and 90th percentile DRHs, 
respectively) for the eight most highly correlated stream class pairs (based on the 50th percentile 
DRHs, Table 2) provides additional insight into stream class-wise differences in inter-annual 
variability (Table 3). For example, Winter Storm (WS) and FER classes exhibited similar 
average streamflow patterns (R2=0.74) and low flow patterns (R2=0.91), but dissimilar high flow 

                           
0.68  
0.26  
0.03  
0.02  
0.00  
0.00  
0.03  

                        
0.71  
0.04  
0.27  
0.12  
0.13  
0.33  

                     
0.40  
0.64  
0.54  
0.58  
0.76  

                  
0.59  
0.61  
0.72  
0.55  

               
0.59  
0.70  
0.74  

            
0.78 
0.66  

         
0.80        

0.95  0.70  0.27  0.02  0.02  0.00  0.00  0.02     
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patterns (R2=0.50). Thus, while the two stream classes have similar seasonal trends, reflecting 
winter rain storms as the primary flow source, they can be distinguished by contrasting high flow 
patterns that occur in wet years. The WS 90th percentile DRH tracks the median daily DRH and 
has a maximum of 13, while the FER 90th percentile DRH diverges substantially from the median 
and has a maximum of 40. These results indicates that FER streams have much flashier, 
unpredictable wet year high flows but similar overall patterns of seasonality compared to WS 
streams. Alternatively, Snowmelt and High-elevation Low Precipitation streams exhibited 
similar patterns across low, average and high flows, indicating similar hydrologic responses in all 
water year types.   

Table 3. R2 values of select pairwise stream class comparisons of low (10th percentile), average (50th percentile), and high  
(90th percentile) flows. Stream classes are as follows: Snowmelt (SM), Low-volume snowmelt and rain (LSR), High-volume 

snowmelt and rain (HSR), Winter storms (WS), Rain and seasonal groundwater (RGW), Groundwater (GW), Perennial 
groundwater and rain (PGR), Flashy ephemeral rain (FER), High elevation low precipitation (HLP).   

  R2   

0.1  0.5  0.9  
SM-HLP  0.92  0.95  0.90  

PGR-FER  0.83  0.80  0.69  
GW-PGR  0.66  0.78  0.78  
LSR-FER  0.81  0.76  0.73  
WS-FER  0.91  0.74  0.50  

RGW-PGR  0.73  0.72  0.51  
LSR-HSR  0.78  0.71  0.41  
WS-PGR  0.80  0.70  0.45  

 
In general, high flow patterns were most distinct across stream classes while low flow 

patterns were most similar (Table 3). For example, Low-volume and High-volume Snowmelt and 
Rain stream classes exhibited very similar low and average flow DRHs (R2=0.78 and 0.71, 
respectively), as they are both snow-and-rain driven, but had distinctive high flow patterns 
(R2=0.41) (Table 3) due to flashy and high magnitude winter rain-dominated storms in Low 
volume Snowmelt and Rain streams. This finding indicates that wet years provide unique 
hydrologic patterns in different stream classes that should be considered in environmental flows 
setting. An exception to this trend was Groundwater and Perennial Groundwater and Rain stream 
classes, which illustrated the opposite pattern: low flow patterns were contrasting (specifically, 
the stability of baseflows over a year), while average and high flows were similarly infrequent 
and occurred primarily in winter.  

 (iii)  Seasonal patterns of inter-annual variability  

The inter-quartile range (IQR) was calculated at a daily time-step and can therefore be used 
to compare annual and seasonal patterns of inter-annual flow variability across stream classes. In 
a comparison of long-term inter-annual variability at the annual scale (Figure 7, top plot), 
Snowmelt (SM) exhibited the highest median daily IQR (0.49), followed by Low-volume 
Snowmelt and Rain (LSR) (0.43), while Groundwater (GW) had the lowest value (0.06). These 



 

17  
  

trends differed significantly between seasons (Figure 7, four bottom plots). For example, SM 
median daily IQR ranged from 0.15 in Fall to 1.15 in Spring, within a single stream class. 
Results also demonstrate that different stream class DRHs have more or less inter-annual 
variability in different seasons. Winter Storms (WS) streams exhibited the highest median daily 
IQR in Fall, Rain and Seasonal Groundwater (RSG) streams in Winter, and Snowmelt streams in 
Spring and Summer.   

     
Figure 7. Box-plots illustrate the interquartile range (IQR) of daily flow across stream classes over the period of record both 

annually and seasonally for fall, winter, spring, and summer. Stream classes are as follows: Snowmelt (SM), Low-volume  
snowmelt and rain (LSR), High-volume snowmelt and rain (HSR), Winter storms (WS), Rain and seasonal groundwater (RGW), 

Groundwater (GW), Perennial groundwater and rain (PGR), Flashy ephemeral rain (FER), High elevation low precipitation 
(HLP).  

A selected comparison of daily IQRs between winter and spring highlights major seasonal 
differences in variability patterns between stream classes (Figure 8). In winter, median daily IQR 
was significantly higher in Winter Storm (WS) than Snowmelt (SM) streams while the reverse is 
true in spring. In winter, this distinction is likely driven by the high variability in timing, 
magnitude, and duration of winter rain storms contrasted by the predictable winter low flows 
associated with high elevation snowmelt-dominated streams. In spring, by contrast, inter-annual 
and spatial differences in climate patterns drive high daily variability in the snowmelt recession 
in Snowmelt streams while high variability rain storms are less common by that time of year. 
The Low-volume Snowmelt and Rain (LSR) class exhibited a balance of the physical drivers of 
both SM and WS classes, resulting in intermediate values in both seasons. However, the variable 
snowmelt influence of LSR streams drove a higher median IQR in spring than winter. Finally, 
while WS streams had similar median IQR values in winter and spring, the range of daily IQRs 



 

18  
  

exhibited (indicated by the boxplot whiskers in Figure 8) was much greater in winter than spring, 
indicating a need to evaluate daily patterns of variability that are not discernable at the seasonal 
scale.   

  
Figure 8. Boxplots summarizing seasonal patterns of daily IQR of selected stream classes [Snowmelt (SM), Low-volume 

Snowmelt and Rain (LSR), Winter Storms (WS)] in winter and spring highlight seasonal and sub-seasonal differences in 
interannual streamflow variability.   

  

 (iv)  Daily patterns of flow variability   

While the median daily IQR in spring was similar in WS and FER stream classes, daily IQR 
patterns varied significantly. For instance, over the month of March, WS daily IQR remained 
relatively stable, fluctuating by only 0.11 (Figure 9). By contrast, FER daily IQR varied by over 
0.5 during the same period and exhibited a nearly inverted pattern of increasing and decreasing 
daily IQR with WS.   

  
Figure 9. Comparison of two stream classes [Winter Storms (WS) and Flashy, Ephemeral Rain (FER)] with similar seasonal 

average daily IQRs highlights additional patterns of flow variability at the daily scale.  
 (v)  Seasonal timing patterns  

Finally, by querying timing attributes of low, median and high flows (i.e. 10th, 50th, or 90th 

percentile) obtained directly from the DRHs, key differences in timing between stream classes 
were revealed with minimal calculation requirements (Table 4). For example, Snowmelt streams 
were shown to have very similar timing for the center of mass of flow (May 26) and the peak wet 
season flow (May 31). By contrast, High-volume Snowmelt and Rain streams exhibited a center 
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of mass in winter (Feb 12) and a wet season peak lagged by over two months (May 15), 
emphasizing the dual controls of rain and snowmelt on the hydrograph.  

Table 4. Timing attributes obtained from stream class DRHs, including the median date of peak flow events (defined as days 
when the 90th percentile DRH > 4) and the date of the maximum of the 50th percentile DRH. These timing attributes represent 
the center of mass of annual flow and the peak of the wet season, respectively.   

 SM HSR LSR WS GW PGR FER RGW HLP 
median peak date [90th] 26-May 12-Feb 3-Mar 24-Jan 4-Jan 14-Feb 12-Feb 19-Feb 15-May 

date of max of 50th 31-May 18-May 15-May 17-Jan 23-Feb 28-Dec 27-Dec 9-Mar 18-May 
 

4. Discussion  
4.1. Reconciling regional hydrologic classifications  

The reconciled classification drew from the strengths of the two previous classifications, 
which were each developed for slightly different purposes. Class differentiation in areas with low 
gauge density was generally greater based on the catchment derived clustering used by Pyne et 
al. (2017), whereas the stream gauge based classification used by Lane et al. (2017a) was able to 
better separate streams in similar physical setting, but with subtle (yet important) hydrologic 
differences. This demonstrates the value of the integrative and interactive classification 
developed through the reconciliation process.  

Traditional flow metrics showed expected patterns across stream classes suggesting good 
hydrologic differentiation using the reconciled classification. For example, systems characterized 
by snowmelt and groundwater were generally less variable than those characterized by winter 
rains and flashy conditions. As expected, flow metrics for stream classes with more reference 
gauges covered larger ranges of values and more overlap with similar hydrologic categories. 
Such “boundary effects” are common in most classification systems and suggest that a secondary 
classification, such as one based on geomorphology or hydraulic properties, may be useful in 
further differentiating streams into subclasses that have more utility for environmental flow 
analysis and restoration planning.   

4.2. The role of archetypes in ecohydrology  

Archetypes play a vital role in science because they enable experimental testing to isolate the 
defining conditions and dynamics of clearly differentiated entities. In geomorphology, a 
landform archetype ideally reflects a unique process set that creates it, and in turn serves as a 
driver of ecohydrological functions (Lane et al. 2018)as well as subsequent morphodynamics  
(Brown et al. 2015). The same is true for a biological archetype involving a specific community 
structure - it is formed by a unique suite of processes and in turn drives other conditions as well 
as feedbacks (Deutschman et al. 1997; Parasiewicz et al. 2008). This study demonstrates how 
hydrologic baselines archetypes, termed dimensionless reference hydrographs (DRHs), can be 
produced to not only reflect and provide context for lumped statistical flow metrics, but 
characterize multi-scale continuous daily, seasonal, and inter-annual flow patterns. These DRHs 
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provide a link between flow metrics and environmental management objectives by providing 
additional insight on hydrologic drivers of ecological response. Addressing study objective 5, the 
following section discusses the physical and ecological interpretability of the hydrologic 
archetypes compared to traditional flow metrics.  

4.2.1. Ecological utility of hydrologic archetypes  

The importance of flow variability and cyclical patterns of intra- and inter-annual variation 
for shaping the biophysical attributes and functioning of river systems is well recognized 
(Naiman et al. 2008; Poff et al. 1997). While traditional flow metrics are generally suitable for 
characterizing major differences in long-term average conditions (including flow variability and 
predictability), study results indicated that DRHs may be more suitable for describing multi-scale 
patterns of variability, as evaluated at the daily, seasonal, and inter-annual scale.   

While all calculated flow metrics for Low- and High-volume Snowmelt and Rain stream 
classes exhibited overlapping values (Figure 5; Supplemental Figure 4), ecologically distinct 
flow patterns were revealed when combined with a direct comparison of their stream class 
DRHs, and thus placed into the context of daily and seasonal variability. Both stream classes 
were influenced by winter rain storms, exhibiting flashier winter flows than Snowmelt streams 
(RBI: HSR, LSR, SM-) and winter maximum flows (MaxMonth: HSR, LSR, SM-). However, 
the DRHs (Figure 6) and seasonal IQR analysis (Figure 7) demonstrated that HSR streams 
exhibited more, larger winter storm events than LSR streams (Figure 6). These storms mobilize 
large amounts of sediment that are re-sorted and distributed during the spring snowmelt recession 
(Yarnell et al. 2015). The DRHs also highlighted increased spring streamflow variability in HSR 
than LSR(Figure 6), reflecting a larger snowmelt influence from upstream catchments included 
in the larger drainage areas of the High-volume stream class. The Highvolume DRH also 
exhibited an extended spring recession, with flows remaining greater than average annual flow 
until mid-July in wet years (Figure 6). This longer duration spring recession provides ample 
opportunity for native species to reproduce and migrate (Yarnell et al. 2010). Thus HSR streams, 
with greater potential sediment mobilization and longer duration spring snowmelt recessions, 
may be more likely to provide habitat conditions conducive to spring spawning and migration as 
well as cooler water temperatures in summer due to a shortened low flow period.   

Stream class DRH comparisons also offer insight into the ecological mechanisms and life 
history strategies contributing to habitat suitability for native species. For example, the high daily 
and inter-annual flow variability exhibited by Winter Storms and Flashy Ephemeral Rain streams 
in winter (Figure 7) indicate flow regimes with low predictability for resident aquatic species. 
Availability of aquatic refugia from unpredictable high magnitude winter storms, such as 
connections to backwater or floodplain habitat favored by juvenile salmon (Moyle 2002), may be 
of much greater significance in these streams than in the more predictable streams. In contrast, 
the high magnitude (Figure 5, Figure 6) and low daily variability (Figure 7) of groundwater 
influenced streams (e.g., GW, PGR) in summer may provide refuge conditions for native 
coldwater species (e.g. Oncorhynchus spp.) that rely on cool perennial water year-round. 
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Similarly, the stream class DRHs indicated that the timing of the transition from spring snowmelt 
to summer baseflow in snowmelt-dominated stream classes (e.g., SM, HSR, LSR, HLP) was 
typically in July, while the start of the low flow season in rain-dominated streams (e.g., WS, 
FER, PGR, RGW) was in May (Figure 6). For species whose life history strategies rely on the 
availability of certain spring habitat conditions (e.g. Populus spp., Stella et al. 2006), this is 
critical. Regional management actions and conservation strategies would benefit by taking into 
account these seasonal differences in flow regime timing, magnitude, and variability across 
stream classes.  

4.2.2. Regional analysis using hydrologic archetypes  

By providing a complete but dimensionless characterization of streamflow patterns, DRHs 
have the capacity to retain critical high resolution information while supporting the broad spatial 
comparisons needed for regional analysis. McManamay et al. (2012) identified within-class 
variability associated with scale differences among individual streams as a principle challenge in 
developing coherent regional streams classes. The dimensionless archetypes proposed here 
eliminate scale effects, addressing the need to simultaneously consider both spatial and temporal 
variability in regional ecosystem assessments. Consequently, variability in catchment area among 
reference gages has limited effect on characterization of hydrologic baselines and allows for 
direct comparison and flow – ecology hypothesis testing across regional stream classes in 
addition to individual reference gages.  

Some stream classes may inherently provide flow conditions more conducive to certain 
native species requirements based on their distinct patterns of natural variability (e.g. 
predictability of winter flows, daily variability of summer baseflow). The ability to quantify 
these differences in hydrologic baseline conditions across heterogeneous landscapes, when 
combined with information on native species distributions, is expected to offer insight into 
potential habitat suitability at the regional scale, thus providing resource managers with much 
needed data for regional conservation or restoration planning. Results from this study indicate an 
opportunity to rapidly evaluate differences between regional stream classes across water years, 
hydrograph components (e.g. low vs high flows), and seasons that can be evaluated with respect 
to specific ecological and geomorphic management objectives.   

4.3. Future applications of hydrologic archetypes in ecohydrology  

Hydrologic baseline archetypes as described in this study open up new avenues for 
hydrologic research. Two specific examples include assessing hydrological alteration due to 
human activities and evaluating the effects of climatic change. As stream class DRHs provide 
daily-scale reference hydrologic expectations for a stream class, comparisons with observed 
continuous streamflow data can provide insight into not only the degree but the pattern of flow 
alteration a particular stream may exhibit. Flow alteration has been evaluated in a variety of ways 
using traditional flow metrics and comparisons with aquatic communities (Webb et al. 2013; 
Carlisle et al. 2016). Additional insight into the pattern of alteration (e.g., systemic depletion or 
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augmentation, alteration to seasonal or inter-annual variability patterns, etc.), and thus potential 
reasons why aquatic communities may or may not be robust, can be obtained from the more 
detailed and temporally explicit stream class DRHs. When designing flow regimes to improve 
impaired flow conditions, seasonally relevant flow management targets based on the distribution 
of daily or seasonal flows within a stream class DRH can be created, providing water resource 
managers with increased flexibility over static flow targets representing long-term averages. This 
is particularly useful when balancing multiple ecological endpoints of interest with water supply 
objectives.    

The detailed temporal data provided in stream class DRHs also allows for comparisons with 
modeled streamflow conditions, making this technique particularly useful for considering climate 
change impacts in streamflow restoration planning. Most snowmelt-influenced streams across 
California and the western U.S. will experience an increase in winter flow magnitude and a 
decrease in snowmelt runoff and timing as winter storm precipitation shifts from snow to rain in 
a warmer climate (Null et al. 2010; Ficklin et al. 2016). Comparisons between modeled climate 
scenarios and DRHs can provide details on potential changes to ecologically relevant patterns of 
variability, such as timing and predictability of snowmelt or variability of summer baseflow, that 
are more difficult to discern using traditional annually averaged flow metrics.  Over time, the 
stream class DRHs can then be evaluated for evidence of shifting baselines with regard to inter-
annual or intra-annual variability. The continuous daily flow regimes provided by the DRHs can 
also aid in assessing uncertain future flow conditions associated with climate change and future 
water resource management decisions by providing reference ranges of variability that can be 
compared to potential ranges of future flows.    

5. Conclusions  
This study evaluated the use of daily resolution dimensionless archetypes of regional stream 

classes derived from a hydrologic classification to support the interpretation of flow metrics and 
inform regional environmental flows assessments. A novel approach for reconciling existing 
classification systems resulted in a single robust hydrologic classification to simplify and 
improve regional environmental flows efforts in California. Hydrologic baseline archetypes (i.e., 
dimensionless reference hydrographs)generated for each of the nine stream classes were shown 
to characterize continuous inter-annual, seasonal, and daily streamflow patterns, allowing for 
explicit, simultaneous evaluation of within and between classes variability in space and time. 
These high-resolution archetypes provided context for information gleaned from a set of 
common flow metrics, thus improving understanding of hydrologic drivers and ecological 
mechanisms contributing to flow variability and habitat suitability. Results indicate that 
hydrologic baseline archetypes may offer a distinct and useful tool for moving beyond metrics to 
improve linkages between aquatic patterns and processes and their hydrologic controls and 
drivers.  
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Metastudy of existing hydrologic classifications 

Metastudies synthesize multiple datasets and viewpoints on a scientific topic. They are 
common in health and social sciences (e.g., (Hunt 2006), but uncommon in geosciences, 
including hydrology. One reason is that it is rare for multiple geoscience studies to use the same 
data or do highly similar analyses of the same setting. Even efforts to reconcile scientific 
concepts across diverse studies within a broad theme are relatively rare, though much needed 
(Blöschl 2006). For the purposes of this study, the ability to reconcile overlapping, spatially 
explicit hydrological models of archetypal baselines for a region to develop a single 
parsimonious model representing the best features of each effort would be a major contribution 
to the scientific literature. To the best of the authors’ knowledge, no such metastudy has been 
completed to date for any region. Scientific and management applications for in-stream flow 
allocations are expected to benefit considerably from a unified consensus stream classification 
system capable of supporting a broad range of programs aimed at protecting water quality, 
ecological health, and adequate water supply for consumptive and non-consumptive uses. 

The first phase of this study involved reconciling two existing hydrologic classifications of 
California in order to provide a single consensus classification system. These two efforts (Pyne 
et al. 2017; Lane et al. 2017) addressed different water management objectives, yet arrived at 
similar, though not totally identical, results. The similarities attest to the resilience of the 
underlying data in providing a clear signal that drove convergent outcomes.  

The two classifications exhibited distinct data inputs, classification and prediction methods, 
and resulting stream classes (Table 1). In terms of  hydrologic input data, Lane et al. (2017) 
evaluated significantly fewer reference gauge stations, but included a broader range of 
hydrologic patterns by incorporating naturalized as well as unimpaired stream gages (Figure 1). 
Streamflows were naturalized by manually calculating the influence of impairments and 
removing this influence to reflect expected conditions in the absence of impairment. The 
reference gauges used by Lane et al. (2017) were also unevenly distributed across the state, with 
the vast majority of gauges on tributaries to the Sacramento and San Joaquin watersheds and 
minimal gauges in southern California (Figure 1). In contrast, the gauges used by Pyne et al. 
(2017) had a more even distribution across the state, but were restricted to gauges draining 
“unaltered” catchments. Thus, each approach was sensible for its original purpose and taken 
together there is an opportunity for reconciliation among them. 

Table 1. Comparison table of two hydrologic classification studies for California, including data inputs, methods, and results.  
Lane et al. (2017) Pyne et al. (2017) 

# of reference gauges 91, unimpaired and naturalized 138, unimpaired 

Classification, 
Method 

Hydrologic metrics, 
K-means non-hierarchical and 
Ward’s hierarchical clustering 

Physical characteristics, 
Unsupervised Bayesian 
modeling and Ward’s 
hierarchical clustering 
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Prediction/validation, 
Method 

Physical characteristics, 
Classification and Regression 

Trees 

Hydrologic metrics, 
Random Forests 

Number of classes 8 7 
Misclassification rate 14% 7 – 21% 

Dominant hydrologic metrics Seasonality, inter-annual 
variability,  annual magnitude 

High flow magnitude, 
flow recession, persistence 

Dominant physical 
characteristics 

Elevation, contributing area, 
winter precipitation 

Winter precipitation, 
geology, elevation 

 

 
Figure 1. Distribution of reference streamflow gauge stations used by Lane et al. (2017) and Pyne et al. (2017). 

 
While different statistical tools were employed, these two studies applied essentially inverted 

methods. They are inverted in the sense that one approach started with hydrological data and 
then analyzed the catchment attributes of clustered time series, while the other started with 
catchment data and then analyzed the hydrological attributes of clustered physical entities. 
Specifically, Lane et al. (2017) used flow metrics extracted from hydrological time series as 
inputs to a cluster analysis and then predicted the spatial distribution of the resulting stream 
classes based on physical catchment characteristics. Alternatively, Pyne et al. (2017) used 
physical catchment characteristics as inputs to a landscape classification model and then 
evaluated hydrologic groupings resulting from the classification.  

Dominant physical catchment characteristics identified by each study were quite similar, with 
both classifications distinguishing elevation and winter precipitation as key controls on 
hydrologic response. However, the order of significance and other key physical controls, such as 
geology and drainage area, differed between the two studies. Conceptually, all of the key 
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physical controls across both studies are widely recognized as important in differentiating 
hydrological regimes where there is a gradient for each variable in a dataset.  

In contrast, the identified dominant hydrologic metrics in each study differed dramatically, 
with inter- and intra-annual flow variability metrics dominating in Lane et al. (2017) while high 
flow magnitude and flow duration dominated in Pyne et al. (2017). As the studies did not use all 
the same flow metrics, this difference in dominant indices, which has major management 
implications, is due in part to a neglect of some significant flow metrics by each study. We 
hypothesize that the additional use of hydrologic archetypes will inform the development of a 
hydrologic conceptual model or the selection of flow metrics such that the resulting hydrologic 
baselines will provide a more complete understanding of ecologically relevant hydrologic 
variability.  

Final reconciled hydrologic classifications 
Figure 2 details the final stream class resulting from dominant combinations of Lane et al 

(2017) and Pyne et al (2017). For instance, when SM streams overlap with Class 6 streams, they 
will be classified as SM as they fall under outcome c in the reconciliation workflow (Step 1, 
Figure 2) because they are in agreement. Alternatively, when LSR streams overlap with Class 2 
streams, they will be classified as HLP. This subregion of disagreement led to outcome b in the 
workflow and resulted in splitting LSR into a new class when it overlapped with Class 2 due to 
its physical distinction from LSR. The asterisks indicate that the resulting classification is only 
true in a particular region. For instance, RSG and Class 3 will only lead to FER in the Mohave 
region; otherwise, RSG stream class will be retained. 

 

 
Figure 2. Reconciliation process detailing the final classification resulting from the reconciliation of major subregions of 

agreement and disagreement between Lane et al. (2017) and Pyne et al. (2017). Asterisks indicate that the final stream classes only 
result in particular subregions. For instance, RSG and Class 3 will only lead to FER in the Mohave region. Otherwise, RSG (from 
Lane et al. 2017) is retained. 
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The distribution of stream lengths by stream class (Figure 3) indicates that the majority of 
California streams by length naturally exhibit low-volume snowmelt and rain (LSR) and rain and 
seasonal groundwater (RGW) hydrologic regimes. Alternatively, the least common hydrologic 
regimes are groundwater-dominated and high-volume snowmelt and rain. 

  

 
Figure 3. Stream length distribution of final stream classes 

 
   



 

31  
  

Table 2. Summary table of reconciled hydrologic classification for the State of California 
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Stream class RBI comparisons (Table 3) in particular distinguish broad-scale differences 
in flow flashiness, ranging from an average of 0.06 in HLP to 0.55 in FER. Not surprisingly, the 
ephemeral FER stream class was the flashiest, followed closely by winter rain dependent PGR, 
RGW, and WS classes. LSR and SM are decreasingly flashy as they are increasingly snowmelt 
dominated. LSR still exhibits a relatively high RBI due to the evident rain influence, while SM is 
extremely stable (RBI=0.12). The HLP class, characterized by stable groundwater-driven flows 
and limited snowmelt influence, is the least flashy (RBI=0.06). However, these results display a 
large spread, making it difficult to distinguish between all but the most distinctive stream classes. 
Further, no seasonal comparisons of RBI values are possible because metrics were calculated 
over the entire population of streamflow data rather than retaining daily timing attributes. 

 
Table 3. Stream class RBI comparisons quantify difference in stream class flashiness. 

 RBI 
Class avg std min max 
HLP 0.06 0.05 0.03 0.10 

SM 0.12 0.04 0.04 0.20 
LSR 0.27 0.14 0.03 0.67 
WS 0.40 0.13 0.13 0.85 

RGW 0.48 0.20 0.14 0.80 
PGR 0.48 0.17 0.04 0.85 
FER 0.55 0.18 0.30 0.90 
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Figure 4. 34 common flow metrics (from Konrad et al. 2008) calculated for each reference gage in each stream class. 
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