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Executive Summary 
Colin F. Byrne, Hervé Guillon, Belize A. Lane, Gregory B. Pasternack and Samuel Sandoval-Solis 

 

The objective of this research study was to determine a channel reach morphology classification 
and the spatial distribution of each geomorphic class throughout the Sacramento River Basin. A 
geomorphic class is defined as an archetypical stream form at the 10 – 20 channel width scale that 
has well-defined channel attributes (e.g. slope, bankfull width, etc.), topographic variability 
attributes (TVA) (e.g. coefficients of variation of width and depth), sediment composition (e.g. 
D50, D84, etc.) and landscape location (e.g. valley confined, partly confined or unconfined) that 
can be verified in the field. The classification was informed by 290 field-surveyed stream sites 
throughout different physiographic provinces, slope and contribution area bins. Surveyed streams 
in the Sacramento River basin were analyzed using multivariate statistical techniques to identify 
groups of reaches with similar stream forms. Two classifications were performed in this study: (1) 
an independent classification for the subset of sites in four hydrologic classes, and (2) a 
geomorphic classification for the entire Sacramento Basin.  

This study focusses on the basin-wide geomorphic classification for the Sacramento Basin, ten 
channel types were identified within the Sacramento River basin (Figure ES-1). Sediment size and 
valley confinement were the most influential channel attributes in the clustering of channel types. 
In general, the classification progresses from confined mountainous upland to unconfined lowland 
streams, except for the first class, (1) boulder-bedrock bed undulating, located in the Modoc 
Plateau with specific volcanic terrain and non-fluvial legacy deposits. Four channel types were 
observed in confined settings, slope and TVAs were critical attributes in splitting these channel 
types after initial sediment size and confinement splits. Three partly-confined channel types 
provide key linkages between confined and unconfined river systems. Channel type 6 (low width-
to-depth ratio, gravel-cobble, riffle-pool,) is the most common type of the survey, while bed 
undulation remains relatively absent, width variability increases significantly, likely due to the 
deposition and reworking of alluvial sediments in the partly-confined setting. Two final 
unconfined channel types were observed in the Sacramento River basin. Chanel type 9 (low width-
to-depth gravel) occur in upland valleys and is the most common class within the Central Valley 
of California. These relatively deep, narrow streams display the smallest sediment sizes of all 
streams, they are laterally stable either due to well developed and heavily vegetated floodplains or 
anthropogenic land use and may exist as anastomosed streams. The ten channel types show the 
diversity of river-channels throughout the Sacramento Basin. These channel types will be used to 
evaluate the response aquatic and riparian ecosystems to different combinations of flow regimes 
and channel types. 

The previous channel type classification was used as the training set to determine a statistical 
model using machine learning techniques that spatially predict channel types throughout the 
Sacramento Basin. The 290 field sites already classified are incorporated as labels into a large-
scale supervised learning model. This model uses 300 coarse-scale features describing topography, 
lithology, soils, climate and land use. The spatial significance of the predictions from the best 



models was assessed. In particular, the spatial pattern of channel types delineates distinct 
geomorphic areas with similar erosion processes. Figure ES-1 shows the spatial prediction of the 
ten channel types classified for the Sacramento Basin using a random forest model. In addition, 
this study also identified the uncertainty of a given reach to be classified correctly by using the 
Shannon-Weiner entropy index, that identifies at which location the prediction is more stable or 
not.  

 

 

ES-1 .- Geomorphic classification and spatial distribution of channel types in the Sacramento River Basin 
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1 Classification of Channel-Reach Morphology 

1.1 Objectives 

The objective of this study was to organize field-surveyed stream sites into groups of similar 
channel form to generate a channel-reach morphology classification for California representing 
archetypical stream forms at the 10 – 20 channel width scale. Surveyed streams in the Sacramento 
River basin were analyzed using multivariate statistical techniques to identify groups of reaches 
with similar stream forms. Independent classifications were also performed for the subset of sites 
in four hydrologic classes within the Sacramento River basin: low-volume snowmelt and rain 
(LSR), perennial groundwater and rain (PGR), rain and seasonal groundwater (RGW), and winter 
storms (WS) (Lane et al., 2017a, 2018). The basin-wide geomorphic classification (i.e. 
independent of annual hydrologic regime) is referred to as the Sacramento classification, while 
independent geomorphic classifications are referred to as the LSR, PGR, RGW, and WS 
classifications. The archetypical channel-reach morphologies described in each classification are 
referred to as channel types. 

1.2  Methodology 
Channel types were developed based on 12 measured channel attributes: contributing area (Ac), 
slope (S), bankfull depth (bf.d), bankfull width (bf.w), bankfull width to depth ratio (bf.w.d), 
coefficient of variation of bankfull width (CV_bf.w), coefficient of variation of bankfull depth 
(CV_bf.d), sinuosity (sin), median grain size (D50), 84th percentile grain size (D84), channel 
roughness (bf.d.D50), and valley confinement distance (vc.dist.25pct). The Sacramento 
classification was developed based on 290 stream surveys including 141 sites surveyed by the 
University of California Davis (UCD) and 149 sites surveyed by the California State Water 
Resources Board Surface Water Ambient Monitoring Program (SWAMP) (Fig. 1). The LSR 
classification was developed from 147 sites (49 UCD, 98 SWAMP), the PGR classification from 
54 sites (44 UCD, 10 SWAMP), the RGW classification from 51 sites (32 UCD, 19 SWAMP), and 
the WS classification from 38 sites (16 UCD, 22 SWAMP).  



 
Figure 1. Site locations of 290 stream surveys used in the multivariate geomorphic classification. 
The Sacramento River basin stream network is represented by annual hydrologic regimes as 
defined by Lane et al. (2018b). 

1.2.1 Site Selection 

Field site locations for Sacramento basin surveys were selected using a random stratified sampling 
scheme based on slope and contributing area as documented in Lane et al., (2017b) (Fig 2). Slope 
bins were defined as <0.1%, 0.1-2%, 2-4%, 4-10%, and >10%. Contributing area bins differed 
based on physiographic province (i.e. Pacific Border or Cascade-Sierra Mountains). Pacific Border 
area bins were <50, 50-5,000, and >5,000 km2, while Cascade-Sierra Mountains sites were <300, 
300-9,000, and >9,000 km2. The slope-area sampling protocol was designed to capture bins of 
transport capacity along the stream network. In addition, because some bins were likely to contain 
a substantially larger number of streams than others, bins were surveyed with an equal number of 
sites, therefore, placing a focus on all channel types, even rare forms, instead of the most dominant 
channel type. 



 

Figure 2. Site locations distributed across area-slope bins for Pacific Border binning protocol. 

1.2.2 Data Acquisition and Processing 

1.2.2.1 Field Surveying and Post-Processing 

Field surveys were completed by UCD teams in the summers of 2015 through 2017. Surveying 
protocols were based upon SWAMP protocols (Ode, 2007). At each site, average wetted width 
was estimated to determine the length of channel to survey. Stream lengths of 150 and 250 m were 
surveyed based on wetted width estimations less than and greater than 10 m, respectively. This 
produced stream survey lengths of 10 to 100 channel widths. Eleven equally spaced cross-sectional 
surveys were completed along the channel length using rod and level techniques. The bankfull 
level was defined using geomorphic and vegetative indices as defined by Ode (2007) for SWAMP 
protocols, including slope breaks, change from annual to perennial vegetation, and changes in 
sediment size. Bankfull depth and water depth were recorded at the thalweg, Wolman pebble 
counts were conducted along each cross-section (Wolman, 1954), and a longitudinal survey was 
conducted along the thalweg at each cross-section. 

Field data were processed in preparation for statistical analysis. In addition to the mean values of 
bankfull width, depth, and bankfull width-to-depth ratio, median and 84th percentile grain sizes of 
Wolman pebble counts were calculated. Slope was calculated from the best fit regression line of 
surveyed water surface elevations along longitudinal, thalweg transects. The roughness parameter 
was calculated as the ratio of bankfull depth to median grain size and the coefficients of variation 
of bankfull width and bankfull depth, or the ratio of standard deviation to mean, were calculated 
at each site using data from each surveyed cross-section. Here, coefficients of variation of width 
and depth are referred to as Topographic Variability Attributes (TVAs). Lane et al., (2017b) 
previously documented that TVAs displayed considerable importance in the identification of 
distinct channel types. 



1.2.2.2 Geographic Information System Metrics 

A geographic information system (GIS) [ESRI ArcGIS 10.4 (ESRI, 2016)] was used for geospatial 
analysis in both initial site selection and the estimation of geospatial attributes used in statistical 
methods.  

Contributing area and slope were estimated for initial site selection based on sampling scheme 
protocols described in 2.1.1. Contributing area was calculated based on the United States 
Geological Survey 10-m National Elevation Dataset (Gesch et al., 2002; NED) and streamlines 
defined by the National Hydrography Dataset version 2 (McKay et al., 2012; NHDPlusV2). Slope 
for pre-survey binning was calculated based on the ratio of the upstream and downstream 
differences in DEM elevation and the length of the given stream segment. This technique provides 
a rough estimate of slope, but error is often associated with these estimates especially for short 
stream segments (Neeson et al., 2011) so slope was calculated from site surveys for statistical 
analysis. 

Sinuosity has been used as a defining metric in previous classifications (Rosgen, 1994) and was 
calculated as the ratio of channel thalweg length to distance between upstream and downstream 
vertices within the GIS. Stream channels were digitized based upon aerial imagery, digital USGS 
topographic maps, and NHD layers for 1000 m. Because sinuosity will be greatly dependent on 
the scale at which it is calculated (Snow, 1989), 1000 m sinuosity represents the length of the 
channel at approximately 100 times the channel width. 

Valley setting and valley confinement play both qualitative and quantitative roles in the majority 
of previous channel classification methodologies due to the influence of distinct valley setting 
processes in the creation of characteristic forms (Brierley and Fryirs, 2000; Fryirs et al., 2016; 
Rosgen, 1994). For example, a channel that abuts a valley wall may be defined by colluvial bed 
material, while streams in wide valleys would be more likely to be alluvial in nature. Because 
qualitative description of valley setting would not be applicable to a statistical cluster method of 
channel classification, a quantitative metric needed to be developed for analysis here. Various 
methodologies to determine valley confinement already exist, including estimation of valley 
bottom and channel-bounding margin assessment (Fryirs et al., 2016; Gilbert et al., 2016), the 
relationship between valley width and channel width (Bisson et al., 1996; Rosgen, 1994, 1996), 
and hydrologic estimation of bankfull width (Beechie and Imaki, 2014). As the SWAMP protocol 
does not call for measurement of floodprone width (i.e. the valley width at two times bankfull 
depth), entrenchment ratio could only be calculated with GIS measurement of floodprone width. 
This approach was deemed unsatisfactory as it was prone to substantial error in interpretation of 
floodprone width, especially at sites in more anthropogenically-influenced valley settings.  

Instead, valley confinement was calculated as a distance from the channel thalweg to bounding 
valley wall. This provided a continuous geospatial metric applicable to the large number and 
variety of sites. The metric is reliant upon definition of a valley bottom slope. For the purposes of 
this study, 25 percent slope was chosen as a threshold between valley bottom and valley wall 
capturing a medial value between clay and sand dominated hill footslopes (Carson, 1972). The 10 
m DEM was converted to a slope raster and reclassified. Valley bottom polygons (i.e. areas with 
less than 25% slope) were created to clip cross-section polylines to site specific lengths. Four 
cross-sections per stream length were averaged to calculate a single valley confinement distance. 



Confined, partly-confined, and unconfined nomenclature was defined by a logarithmic scale of <= 
100 m, >100 and <= 1000 m, and > 1000 m, respectively.  

1.2.3 Multivariate Statistical Classification 

Statistical techniques used to define multi-dimensional clustering of field-surveyed geomorphic 
attributes were based upon Lane et al., (2017b). This iterative approach utilized non-metric 
multidimensional scaling (NMDS) (Anderson, 2001; Clarke, 1993; Kruskal, 1964), hierarchical 
clustering using Ward’s algorithm (Murtagh and Legendre, 2014a, 2014b; Ward, 1963), 
classification and regression trees (CART) (De’ath and Fabricius, 2000), and Tukey’s honestly 
significant differences to develop clustered groupings for each RGW, WS, and PGR hydrologic 
classes (Tukey, 1991). The R language was used for all statistical analysis (R Core Team, 2017). 
Initial correlations were conducted by calculating the Pearson’s coefficient for zero to one rescaled 
attribute values using the cor function (stats package). The NMDS calculations were conducted 
with the use of the metaMDS function (vegan package) (Oksanen et al., 2018). Hierarchical 
clustering using Ward’s algorithm utilized the hclust function with the method defined as 
Ward.D2 (stats package) and the NbClust function to assess the suggested number of 
hierarchical clusters (NbClust package) (Murtagh and Legendre, 2014a). The classification trees 
were developed with the rpart function and pruned with the prune function (rpart package) 
(Therneau and Atkinson, 2018). Finally, Tukey’s honestly significant differences were calculated 
with the ghlt function with inputs specified by an analysis of variance model using the aov 
function (multcomp and stats packages, respectively) (Hothorn et al., 2008).  

Linear regressions between all geomorphic inputs were first conducted to remove highly correlated 
metrics. Remaining geomorphic attributes were rescaled from zero to one to remove the influence 
of large magnitude attributes. NMDS scaling in combination with principal component vectors 
allowed for the comparison between attributes and the plotting of multi-dimensional clusters in 
two-dimensional space. Hierarchical clustering with Ward’s algorithm stratified the data by 
minimizing within-cluster variance and maximizing between-cluster variance. Ideally, this means 
that more similar geomorphic settings are clustered together. Hubert Index values were used as 
one tool in selection of an appropriate number of channel types. Heuristic refinement of these 
groupings was also conducted based upon field reconnaissance and expert knowledge of specific 
field sites. Because branches within the hierarchical clustering do not necessarily have physical 
meaning, classification tree analysis was conducted as a method to understand the ability of 
geomorphic attributes to correctly define geomorphic classification. Pruning of the classification 
trees was conducted to ensure the number of final tree nodes matched the final number of channel 
types chosen. Tukey’s honestly significant differences approach allowed for the comparison of 
attributes within each channel type as well. The statistical methodology is iterative in the sense 
that both the hierarchical clustering and classification tree analysis can be altered with different 
combinations of input variables to better understand the geomorphic attributes most influential in 
clustering and classification. 



1.3 Results 

1.3.1 Channel Classifications within Sacramento Basin Hydrologic Regimes 

Statistical analysis using NMDS identified the most influential attributes in the multidimensional 
space. For LSR sites, D84, bf.w, and bf.d returned the greatest correlations (r2 = 0.97, 0.80, and 
0.54, respectively) (Fig. 3a). Sediment size and bankfull width were most influential along the 
primary and secondary axes, respectively. For PGR sites, D84, Ac, and bf.w.d returned the greatest 
correlations (r2 = 0.94, 0.76, and 0.59, respectively) (Fig. 3b). Sediment size was most influential 
along the primary axis while contributing area was most influential along the secondary axis. 
NMDS of RGW sites indicated that D84, vc.dist, and Ac were the most highly correlated (r2 = 
0.89, 0.72, and 0.68, respectively) (Fig. 3c). Again, sediment size and contributing area were the 
most influential along the primary and secondary axes, respectively. Data from WS sites resulted 
in D84, Ac, and bf.w returning the greatest correlations (r2 = 0.81, 0.71, and 0.66) (Fig. 3d). Similar 
to both PGR and RGW sites, the primary axis was most correlated with sediment size and the 
secondary axis with contributing area. Stress levels for LSR, PGR, RGW, and WS sites are 
displayed in Table 1. These values all correspond to stress levels that should likely lead to a usable 
ordination (Clarke, 1993). These results show consistency in the most influential attributes of 
clusters in multidimensional space, at least in terms of accounting for the most variance. However, 
statistically significant differences of attributes with less correlation to the primary and secondary 
axes were also critical in deciphering all channel types introduced later. 

Table 1. Summary of statistical clustering results for LSR, PGR, RGW, and WS geomorphic 
lassification. 

 
 



 

Figure 3. Non-metric multidimensional scaling with primary component vectors associated with 
rescaled geomorphic attributes of a) LSR, b) PGR, c) RGW, and d) WS sites. Colors represent 
final channel type classification independent of streams in other hydrologic classes. 

Hierarchical clustering of LSR, PGR, RGW, and WS sites was conducted using the iterative 
methodology described above (Hubert Index and heuristic splitting information detailed in Table 
1). LSR sites were statistically clustered into five groups, and two further groups were identified 
to be important based on high TVA and slope values (Fig. 4a). These sites exhibited clear 
differences in stream form from the other sites in the original statistical cluster. LSR clusters 
ranged in size from five to 33 sites. Hierarchical clustering of PGR sites led to five original 
statistical clusters and one heuristic cluster split from the largest statistical cluster (Fig. 4b). The 
statistical significance of this heuristic cluster was confirmed with Tukey’s honestly significant 
differences. The number of sites in each cluster ranged from two to 14. Clusters with a small 
number of sites were typically avoided since sample size was likely to drive very site-specific 
differences to emerge rather than larger regional trends. However, in the PGR classification, 
clusters of two and three sites were retained due to clear physical geomorphic differences between 
neighboring clusters (e.g. most similar clusters) identified in the heuristic assessment. For RGW 
sites, eight statistical clusters were originally selected to incorporate key differences in channel 
types with more similar clustering (e.g. channel types 3 and 5 in Fig. 4c). Heuristically, two clusters 
with low sample size were recombined with larger, similar clusters using field knowledge and 
landscape setting information. This resulted in six final clusters with number of sites ranging from 
four to thirteen. Hierarchical methods for WS sites settled on four statistical clusters with a fifth 
cluster being extracted from the largest cluster group based upon channel area and size (Figs. 4d). 
Final WS clusters ranged in size from six to ten sites. 



 

Figure 4. Hierarchical clustering using Ward’s algorithm for rescaled geomorphic attributes of 
a) LSR, b) PGR, c) RGW, and d) WS sites. Blue boxes indicate groups based upon statistical 
clustering, while red boxes display heuristic refinement through combination or splitting of 
statistical groups. 

Independent application of the classification tree analysis for LSR, PGR, RGW, and WS channel 
types indicated consistency in the most influential geomorphic attributes (Fig. 5). Sediment size 
(D84) and valley confinement distance (vc.dist.25pct) appear in each of the classification tree 
analyses for the four classifications. In addition, a cross-sectional geometry attribute (i.e. bankfull 
width or depth) appeared in each of the classification trees. Finally, a TVA and contributing area 
appeared in half of the classification trees. Complexity Parameter (CP) values applied in pruning 
of each classification tree are indicated in Table 1.  



 

Figure 5. Classification and Regression Tree Analysis applied to channel types developed from 
hierarchical clustering with heuristic refinement for a) LSR, b) PGR, c) RGW and d) WS 
streams. 

Seven channel types were identified in LSR streams: confined, boulder-bedrock, large area (LSR-
1), confined, boulder-cobble, headwater (LSR-2), unconfined, gravel, low slope (LSR-3), partly-
confined, cobble-gravel, uniform (LSR-4), partly-confined, gravel-cobble, riffle-pool (LSR-5), 
confined, cobble-boulder, cascade/step-pool (LSR-6), and confined, cobble-boulder, uniform 
(LSR-7) (Fig. 6). The classification tree was optimized using D84, bf.d, vc.dist.25pct, bf.w.d, and 
slope as attributes, which produced a classification rate of 88%. Cross-validation of classification 
trees are quantified in Table 1. Results of Tukey’s honestly significant differences algorithm 
display the statistical differences between groups along the classification tree (Fig. 7). 

While statistical differences in attributes drive the resulting channel types, it is important to place 
these channel types within the context of a watershed or river continuum. In the steepest 
landscapes, confined, cobble-boulder, cascade/step-pool (LSR-6) streams are present. With steep 
slopes, these streams exist in headwater settings with coarse sediment. In contrast, streams with 
lesser gradients and smaller grain sizes can also exist in headwater settings as confined, boulder-
cobble, headwater (LSR-2) streams. If confined settings continue, headwater streams give way to 
larger confined, boulder-bedrock, large area (LSR-1) or confined, cobble-boulder, uniform (LSR-
7) streams which exist at similar slopes but exhibit differences in TVA values. As the landscape 
becomes less confined, streams are likely to transition to partly-confined, cobble-gravel, uniform 
(LSR-4) or partly-confined, gravel-cobble, riffle-pool (LSR-5) streams, which are again notably 
different in the associated TVA values. Finally, in unconfined settings, unconfined, gravel, low 
slope (LSR-3) streams were found to exist and are likely to include single thread and anastomosed 
systems. Because LSR streams are likely to be found in mountainous regions of California, 
unconfined systems are likely limited to upland valleys where slopes decrease significantly. 



 

Figure 6. Channel types described by LSR statistical analysis with heuristic refinement. 



 

Figure 7. Tukey’s honestly significant differences for PGR, RGW, and WS attributes found in the 
classification tree for each analysis. PGR, RGW, and WS attributes are represented by rows 1 
through 3, respectively. Statistically significant differences between channel types for each 
attribute exist where color bars do not overlap. Colors are unique to each individual attribute 
for each hydrologic class. 

Six channel types were identified in PGR streams: partly-confined headwater pool-riffle (PGR-1), 
confined uniform (PGR-2), confined bedrock (PGR-3), unconfined large area pool-riffle (PGR-4), 
unconfined uniform constrained (PGR-5), and partly-confined uniform (PGR-6) (Fig. 8). Based 
upon the hierarchical and heuristic cluster groups, 94% of all PGR sites were correctly classified 
based on D84, CV_bf.d, bf.w, bf.d, and vc.dist.25pct.  

The partly-confined headwater pool-riffle (PGR-1) channel type is defined as a headwater stream 
due to small contributing areas. These sites often exist in upland valleys constrained by 
mountainous terrain. Downstream, these sites likely contribute to similar but larger and more 
uniform streams described here as partly-confined uniform (PGR-6). These streams exist in a 



similar valley setting described by confinement distance but have a significantly larger bankfull 
width (bf.w) and less depth variability (CV_bf.d). The partly-confined uniform streams have some 
degree of floodplain development in a partly-confined valley setting. Uniform channel type 
indicates low TVA values, an attribute shared by two other channel types  in both confined and 
unconfined settings. Confined uniform (PGR-2) streams were identified in mountainous areas with 
steep valley walls defining the stream margin. These sites are likely influenced by colluvial 
processes in addition to longitudinal deposition and erosion of alluvial material within the stream 
channel. In comparison, confined bedrock (PGR-3) streams are defined by bedrock substrate with 
minimal alluvial material. The final two channel types identified in PGR streams are located within 
unconfined valley settings. Unconfined, large area pool-riffle (PGR-4) are identified by the large 
contributing area and distinct channel planform characteristics. These streams are of high stream 
order and take the identified characteristic form as the streams become unconfined in the Central 
Valley. The second channel type within unconfined valley settings are identified as unconfined 
uniform, constrained (PGR-5). These channel types are of variable contributing area and are 
substantially influenced by anthropogenic adjustments. The uniform nature of the channel 
dimensions (i.e. low TVA values) may be heavily influenced by human alteration in both 
agricultural and urban settings. 



 

Figure 8. Channel types described by PGR statistical analysis with heuristic refinement. 

 



Six channel types were also identified in streams defined by RGW hydrology, although many types 
were distinct from those identified in PGR streams. These channel types were described as: 
confined bedrock (RGW-1), confined step pool (RGW-2), confined uniform (RGW-3), partly-
confined lowland pool-riffle (RGW-4), partly-confined upland pool-riffle (RGW-5), and 
unconfined constrained (RGW-6) (Fig. 9). Classification trees correctly placed 92% of statistically 
and heuristically defined channel types. Attributes which define statistical splits within the RGW 
dataset include D84, vc.dist.25pct, CV_bf.w, bf.w, and Ac (Fig. 5c). Figure 7 displays the 
significant differences between channel types  which drive the classification tree for RGW sites.  

As nearly 80% of RGW streams occur in the eastern region of the Sacramento River basin, RGW 
streams predominantly flow out of the Sierra Nevada Mountain Range. This is in contrast to PGR 
streams which mainly exist or originate within the western Coast Ranges of the Sacramento basin. 
Differences in elevation and aspect between the Coast and Sierra Nevada Ranges drive differences 
in hydrologic regime. Differences in hydrology, geology, and ecology all appear in RGW streams 
when qualitatively compared to PGR channel types. Headwater streams in RGW streams originate 
predominantly in the Sierra Nevada Range and to a lesser degree in the Coast Range. These 
channel types are identified as confined, step pool and confined, uniform and differentiated by 
slope. Steeper streams take the form of step pool channels with greater TVA values while lower 
slope streams have considerably more uniform channel dimensions, especially width. Confined, 
bedrock channel types also exist within RGW streams. These streams also have relatively small 
areas and remain confined by steep valley walls. In portions of the hydrologic class where 
confinement distance is greater, partly confined, lowland pool-riffle and partly-confined, upland 
pool-riffle streams exist. Statistically significant differences in width and contributing area create 
independent groupings of these channel types, even with similar planform descriptions. Partly-
confined, lowland pool-riffle exist in both wide valleys of the Coast Range and as valley walls 
dissipate on the western side of the Sierra Nevada Range. Likely downstream of these streams in 
the Central Valley are unconfined, constrained channels. These streams are likely altered or 
constrained by urban or agricultural influences, thus limiting the natural lateral processes of the 
streams. Ultimately, these streams flow from alluvial fans near the foothills of the Sierra Nevada 
Range to the main-stem Sacramento River. 

Five channel types were identified for streams defined by WS hydrology: confined step pool (WS-
1), partly-confined gravel-cobble (WS-2), unconfined pool-riffle (WS-3), unconfined uniform 
headwater (WS-4), and partly-confined headwater gravel-cobble (WS-5) (Fig. 10). Classification 
trees correctly placed 97% of streams into the correct group based upon statistical splits in D84, 
vc.dist.25pct, Ac, and bf.d (Fig 5d). The statistical differences in channel types are plotted in 
Figure 7. 

While WS streams are more distributed across the state, they are defined by lower total 
contributing areas than PGR or RGW streams. In addition, several channel types associated with 
WS hydrology appear to depend on their location within the watershed. For example, confined 
step pool channels exist to a large extent in the northern mountainous regions defined by WS 
hydrology. These steep slope channels have similar morphology when qualitatively compared to 
the RGW step pool channel type. Confined step pool streams have small contributing areas and 
are the most confined of streams in this hydrologic class. Partly-confined, headwater gravel-
cobble and unconfined, uniform headwater streams also exhibit small contributing areas. However, 
the spatial context of these streams is considerably different than the step pool channels. While 



partly-confined, headwater gravel-cobble streams have high slopes similar to the confined step 
pool channel type, these streams exist in predominantly foothill, unconsolidated terrain. This 
spatial location likely creates more horizontal slope distribution instead of vertical adjustment as 
in the confined step pool streams. While unconfined, uniform headwater streams also have limited 
contributing area, these streams originate in the Central Valley region. Therefore, these small 
streams have low slope. Because the streams are within the Central Valley, when flow becomes 
concentrated to the point of channel formation, these channels are likely constrained by urban and 
agricultural influences. Partly-confined gravel-cobble and unconfined pool-riffle have greater 
contributing areas than the other three channel types in this hydrologic class but still not as large 
as some streams in PGR or RGW hydrologic classifications. Partly-confined gravel-cobble 
streams likely exist predominantly in foothill regions, but are of higher stream order than partly-
confined, headwater gravel-cobble streams. The two types of streams are similar in their existence 
in highly erodible, unconsolidated landscapes, but partly-confined gravel-cobble are statistically 
larger in size. Finally, unconfined pool-riffle streams exist as larger rivers within the Central 
Valley. In addition to the classification tree differences, these streams also have significantly 
greater variability in depth due to their pool-riffle form. Even though anthropogenic influences 
likely constrain these rivers to some degree, it may be that discharges characteristic of unconfined 
pool-riffle require more lateral area, thus leading to more observable river form compared with 
smaller streams in the Central Valley. 



 

Figure 9. Channel types described by RGW statistical analysis with heuristic refinement. 

 



 

Figure 10. Channel types described by WS statistical analysis with heuristic refinement. 

1.3.2 Unified Sacramento River Basin Classification 

1.3.2.1 Multivariate Statistical Clustering 

Sediment size and valley confinement were identified as the most influential attributes in 
multivariate clustering. The final NMDS solution recorded a stress value of 0.139 with a non-
metric coefficient of determination of 0.981 between observed dissimilarity and ordination 
distance (Fig. 11a). The first and second principle component axes (PCAs) resulting from the 
NMDS ordination explained 63% of the variance in the data with loadings of 0.94 for D84 and 
0.91 for vc.dist for PCA-1 and PCA-2, respectively. These strong loading values indicate a large 



amount of clustering in the NMDS analysis can be attributed to these two variables alone. Inclusion 
of PCA-3 and -4 explained 80% of variance, for which bf.w and CV_bf.d are the attributes with 
the greatest loading values. 

Ten channel types were identified through the Ward’s clustering with heuristic refinement and 
CART (Figs. 11 and 12). The Hubert Index suggested three Ward’s clusters as the optimal number 
of groupings, however this was due to strong breaks in sediment size and valley confinement. As 
three groups was insufficient to describe the full number of channel types within the basin, 
secondary indications by Hubert Index values at 10 and 14 groups were the focus of heuristic 
refinement. The final ten channel types were the result of CART analysis which resulted in a 
successful prediction rate of 84%. Ten-fold cross-validation of this prediction was 75%. 

 

Figure 11. Results from a) non-metric multidimensional scaling, b) classification and regression 
tree, and c) hierarchical clustering by Ward’s algorithm analyses resulting in ten geomorphic 
channel types. 



Final channel type clusters were made up of between 6 and 45 sites. Clusters with a small number 
of sites were typically avoided, as outliers were likely to drive site-specific differences rather than 
larger basin trends. However, it was ultimately the uniqueness of cluster attributes that drove final 
channel types. Because sediment size and valley confinement played such an important role in site 
clustering, the classification is broadly numerically-organized from large to small clast size (Fig. 
13). Channel types were then organized by median valley confinement (Fig. 12). While there was 
not a high correlation between sediment size and confinement distance using individual site data 
(R2 = -0.27), there is a general inverse relationship between channel type sediment size and valley 
confinement distance. Median attributes of each channel type can be found in Table 2. 

Table 2. Median channel attributes of ten channel types within the Sacramento River basin. 

 

Given the general relationships between confinement and sediment size, the classification 
progresses from confined mountainous upland to unconfined lowland streams. A notable exception 
is the first channel type, which fits within the conceptual framework of large to small sediment 
size rivers, but the sites are classified as unconfined. This lack of confinement indicates colluvial 
and mass movement processes are unlikely in these settings. Therefore, the large sediment clasts 
and unique Modoc Plateau volcanic terrain at these locations are likely non-fluvial legacy deposits 
(Hauer and Pulg, 2018). The remaining channel types generally follow the pattern of large 
sediment size-high confinement to small sediment size-low confinement progression. 

Four channel types were observed in confined settings: boulder, high-gradient, step-pool/cascade; 
boulder-bedrock, uniform; boulder-bedrock, low-gradient, step-pool; and gravel-cobble, uniform. 
Slope and TVAs were critical attributes in splitting these channel types after initial sediment size 
and confinement splits. Boulder, high-gradient, step-pool/cascade (n = 27) streams are defined by 
a significantly high slope value compared to all other groupings and less bedrock influence than 
other large-grained channel types (Fig. 13). These streams have relatively low depth variability, 
but moderate width variability. While step-pool streams are thought to have high depth variability, 
the statistical conflation of cascade and step-pool systems likely resulted in a dampened depth 
variability. A second partial explanation for low depth variability may be that depth variability in 
steep streams is lower relative to lower gradient step-pool and riffle pool styles (Wohl et al., 1993). 
As slope decreases, two channel types with boulder-bedrock sediment sizes and confined settings 
exist: boulder-bedrock, uniform and boulder-bedrock, low-gradient, step-pool. Boulder-bedrock, 
uniform streams (n = 36) exhibit low TVA values. Similar to plane bed streams in other literature 
(Grant et al., 1990; Montgomery and Buffington, 1997), uniform terminology is used here to 
signify smaller changes in both depth and width along a reach. However, it should be noted that 



uniform streams do still exhibit some variability in channel dimensions. At slopes between the 
previous two channel types, boulder-bedrock, low-gradient, step-pool reaches (n = 33) exhibit 
high TVA values. Although width and depth undulation is substantial, the bf.w.d values are small 
compared to other channel types. The final confined channel type exhibits significantly smaller 
sediment sizes as compared to the other three confined channel types. Similar to boulder-bedrock, 
uniform streams, gravel-cobble, uniform streams (n = 43) display low TVA. This channel types 
also exhibited the smallest median channel dimensions in the basin. 

Three partly-confined channel types provide key linkages between confined and unconfined river 
systems: low width-to-depth ratio, gravel-cobble, riffle-pool, cobble-boulder, uniform, and high 
width-to-depth ratio, gravel-cobble, riffle-pool. Partly-confined low width-to-depth, gravel-
cobble, riffle-pool (n = 45) streams exhibit similar grain sizes and dimensions to confined gravel-
cobble, uniform streams. While bed undulation remains relatively absent, width variability 
increases significantly, likely due to the deposition and reworking of alluvial sediments in the 
partly-confined setting. These streams are the most common channel type of the sites surveyed. 
Due to their small size, bed undulations may be difficult to measure. Similar to confined gravel-
cobble, uniform streams are partly-confined cobble-boulder, uniform streams (n = 33). While TVA 
values remain low for these uniform streams, bf.w.d is significantly higher than both the confined 
gravel-cobble, uniform and partly-confined, low width-to-depth ratio, gravel-cobble, riffle-pool 
streams. In addition, larger sediment sizes exist compared to other partly- and unconfined channel 
types. While partly-confined cobble-boulder, uniform streams exhibit the lowest median depth 
variability, partly-confined, high width-to-depth ratio, gravel-cobble, riffle-pool streams exhibit 
the greatest depth variability, with the exception of the unique bed undulating, boulder-bedrock 
channel type. In combination with moderate width variability, the smaller sediment sizes likely 
lead to bedform resistance in compare to grain resistance in the cobble-boulder, uniform channel 
type. 

Two final unconfined channel types were observed in the Sacramento River basin: low width-to-
depth gravel and gravel-cobble, riffle-pool. Low width-to-depth, gravel streams (n = 27) occur in 
the most unconfined settings. These relatively deep, narrow streams exist both in upland valleys 
and within the Central Valley of California and display the smallest sediment sizes of all streams. 
These streams are laterally stable either due to well developed and heavily vegetated floodplains 
or anthropogenic land use and may exist as anastomosed streams. The low width-to-depth, gravel 
channel type exhibits low depth variability and only moderate width variability. In comparison, 
the unconfined gravel-cobble, riffle-pool channel type has relatively high depth variability and 
moderate width variability. While depth variability is lower than partly-confined high width-to-
depth ratio, gravel-cobble, riffle-pool streams, higher width-to-depth ratios in these unconfined 
gravel-cobble, riffle-pool streams may be an indication of systems near the threshold of a braided 
morphology. 



 

Figure 12. The ten channel types within the Sacramento River basin developed by multivariate 
statistical analysis with heuristic refinement. 



 

Figure 12 (cont’d). The ten channel types within the Sacramento River basin developed by 
multivariate statistical analysis with heuristic refinement. 



 

Figure 13. Tukey’s Honestly Significant Differences between attributes of each channel type in 
the Sacramento River basin.  

 

  



2 Predictions of Channel Types over the Sacramento Basin 

2.1 Methods 

The channel type of each stream segment in the region was predicted using a supervised 
classification approach: given a set of predictors (variables) what label (channel type) should be 
assigned to each stream segment? Ten hydro-geomorphic channel types were previously derived 
using an unsupervised learning approach (see Section 1.3.1). Since each channel type was expert 
inspected in the unsupervised learning phase, the labels are treated as noiseless (e.g. Borut, Dragan, 
and Nada 2010; Garcia, Lorena, and Carvalho 2012; Sluban, Gamberger, and Lavrač 2013; Garcia, 
Carvalho, and Lorena 2015). The frequency of stream reaches in each classes is unbalanced (Table 
3), with the fewest streams in class 1 and the majority in classes 5 and 6.  

A multi-tiered machine-learning framework was developed to select the best set of predictors, pre-
processing and classifier – or classifying algorithm – to perform the classification task. The four 
stages of this framework are described below (Figure 14): (1) define a tractable problem for 
reducing predictor noise; (2) assess the statistical performance of classifiers; (3) assess the stability 
of the spatial predictions; and (4) evaluate the geomorphic relevance of the predictions.  

Figure 14. Flowchart of the four-fold machine learning framework. 

 

  



Table  3. Number of observations for each class of channel type and prevalence (i.e. relative 
frequency). 

HG class 1 2 3 4 5 6 7 8 9 10 
number 6 27 36 33 43 45 33 24 27 16 
prevalence 0.021 0.093 0.12 0.11 0.15 0.16 0.11 0.083 0.093 0.06 

 
 

2.1.1 Defining a Tractable Problem and Reducing Predictor Noise 

As most data-driven approach, the set of predictors used in input influences the output. In the 
following paragraphs, the input variables to the machine learning algorithms are described. 
However, as irrelevant predictors might induce noise and deteriorate the predicting performance 
of the classifiers, an avenue to filter predictor noise is detailed. 

Following a data-driven approach, a large set of predictors is initially included in the machine 
learning framework. This initial set of predictors corresponds to a set of 287 metrics commonly 
understood to influence channel morphology (e.g. Rosgen 1994; Montgomery and Buffington 
1998; Buffington and Montgomery 2013; Teutschbein et al., 2018): topography, geology, soils, 
land cover and climate. Several predictors are derived from two core datasets: (i) the 10-m National 
Elevation Dataset (Gesch et al., 2002; NED); and (ii) the stream segments from the National 
Hydrology Dataset (McKay et al., 2012; NHDPlusV2) with their associated hydrologic class (Lane 
et al., 2018). The initial set of predictors included 108 Terrain Analysis Metrics, 3 GIS-derived 
metrics, 32 fractal dimension metrics, 4 network topology metrics and 140 contextual variables. 

Several Terrain Analysis Metrics (TAM) were calculated from the NED 10-m Digital Elevation 
Model (DEM),: elevation 𝑧𝑧, slope, aspect, roughness (𝑚𝑚𝑚𝑚𝑚𝑚[𝑧𝑧𝑖𝑖] −𝑚𝑚𝑚𝑚𝑚𝑚[𝑧𝑧𝑖𝑖]), flow direction, 
planform curvature, profile curvature, Topographic Position Index (TPI, ⟨𝑧𝑧𝑖𝑖 − �𝑧𝑧𝑗𝑗�⟩𝑗𝑗) and Terrain 
Ruggedness Index (TRI, ⟨|𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗|⟩𝑗𝑗), where 𝑧𝑧𝑖𝑖 is the elevation of the current DEM cell; 𝑧𝑧𝑗𝑗 are the 
8 neighboring cells and brackets indicate averaging all 𝑗𝑗. This calculation was performed using the 
R package raster (Hijmans et al., 2018). In addition, as curvature is linked to erosion (Hurst et al., 
2012), planform and profile curvatures estimations following Evans method (Florinsky 1998) were 
added to the C code of the raster package. Since the distribution of Terrain Analysis Metrics 
differentiates different stages of landscape maturity (Bonetti and Porporato 2017) and channel 
types (Lane, Pasternack, et al., 2017), the following Distribution Metrics (DM) were estimated in 
addition to the mean value of each TAM: mean, median, minimum, maximum, standard-deviation 
and skewness. The TAM-DM metrics were estimated over two spatial scales: a 512 × 512-m tile 
centered at the midpoint of each stream segment and along a 100-m wide near-channel buffer. The 
calculation of the TAM-DM over the ∼ 109k stream segments was performed using UC Davis 
High Performance Computing (HPC) FARM cluster. 

Three predictors were derived using ArcGIS (ESRI 2016): channel confinement (Fryirs, Wheaton, 
and Brierley 2016), channel slope and sediment supply. Confinement was defined as the distance 
between the channel and the closest high slope as described in Section 1.2.2.2. Sediment supply 
was estimated using the Revised Universal Soil Loss Equation (Renard et al., 1997; RUSLE) from 



data publicly available from the California Waterboards and from NLCD 2011 data combined with 
Haan, Barfield, and Hayes (1994) lookup table. 

Metrics describing the stream network topology were extracted from the NHDPlusV2 dataset: 
drainage areas, Strahler’s stream order and Local Drainage Density (LDD). Strahler’s stream order 
(Strahler 1957) captures the hierarchy of streams in a drainage basin with low-order streams 
combining to form higher order streams. For a given stream segment, LDD corresponds to the 
drainage area divided by the total length of the network upstream from the segment and has been 
recently shown to identify areas with distinct geomorphic processes (Danesh-Yazdi, Tejedor, and 
Foufoula-Georgiou 2017). 

The fractal dimension (Mandelbrot 1967), which corresponds to the slope of the relationship 
between the average standard deviation and the spatial scale, has been shown to reflect the 
influence of tectonics, lithology and erosion processes (e.g. Xu, Moore, and Gallant 1993; Carr 
1997; Sung, Chen, and Chao 1998; Sung and Chen 2004; Faghih and Nourbakhsh 2015; Liucci 
and Melelli 2017). Here, fractal dimension was calculated following the methods from Liucci and 
Melelli (2017) in 3 steps over 32 sets of 5 consecutive scales: (i) the initial elevation raster was 
aggregated to a standard deviation raster; (ii) the standard deviation rasters were aggregated to an 
average standard deviation raster; and (iii) a regression over the log-transformed stack of average 
standard deviation rasters provided an estimation of the fractal dimension at each cell. 

The fractal dimension is obtained by performing a linear regression over the log-transformed stack 
of average standard deviation rasters. The relationship between fractal dimension and scale is 
known to vary with the scale of observation with a crossover between shorter and longer length-
scales (Pastor-Satorras and Rothman 1998; Dodds and Rothman 2000; Duclut and Delamotte 
2017), such that fractal dimension represents tectonism at large scale (Wilson and Dominic 1998; 
Sung and Chen 2004; Faghih and Nourbakhsh 2015; Liucci and Melelli 2017) and erosion 
processes at short scale (Lifton and Chase 1992; Sung and Chen 2004; Faghih and Nourbakhsh 
2015; Liucci and Melelli 2017). To address this issue, the fractal dimension was computed over a 
sliding window of five scales with starting scales of 20, 30, 50, 70 and 90-m. Fractal dimension 
was also computed at 32 different upper tile scales ranging from ∼0.6 km to ∼82 km as an 
alternative to using multi-scale decomposition of the topography (Cazenave et al., 2012; 
Buscombe 2016; Agarwal et al., 2017; Newman, Lindsay, and Cockburn 2018). The calculation 
of the fractal dimension over the state of California was performed using UC Davis High 
Performance Computing (HPC) FARM cluster. 

The initial resolution of the NED raster was 10-m, meaning each cell is 10 × 10-m. The initial 
elevation raster was aggregated to five standard deviation rasters with pixel sizes of 20, 40, 80, 
160, and 320-m. Each cell of the 20-m standard deviation raster corresponds to the standard 
deviation of the elevation computed over 2 × 2 = 4 cells of the initial elevation raster (32 × 32 =
1024 cells for the 320-m raster). Then, the standard deviation rasters were aggregated to an 
average standard deviation raster. The pixel size of such a raster corresponds to the smallest scale 
at which a meaningful averaging can be computed for the largest scale raster (320-m): 640-m. In 
consequence, each cell of the five 640-m rasters corresponds to the average standard deviation 
over 32 × 32, 16 × 16, 8 × 8, 4 × 4 and 2 × 2 pixels for 20-m, 40-m, 80-m, 160-m, 320-m 
rasters, respectively.  



Contextual predictors were provided by the publicly available Stream-Catchment Dataset 
(StreamCat; Hill et al., 2015). These predictors are integrated over the entire upstream watershed 
and at the limited part of the catchment draining to a stream segment. In particular, the following 
set of contextual predictors were selected: lithology (Cress et al., 2010; initial resolution >1 km); 
soil characteristics (Schwarz and Alexander 1995; STATSGO, 1 km initial resolution); land cover 
(Homer et al., 2015; NLCD 2011, 30-m initial resolution); runoff and air temperature climatologies 
between 1981 and 2010 (PRISM Climate Group 2004, 800–m initial resolution); mines (count); 
Indices of Catchment and Watershed Integrity (Thornbrugh et al., 2018). In addition, some of the 
StreamCat predictors were computed within a 100-m riparian buffer. 

One key challenge of this project is the prediction of channel reaches defined from data acquired 
from 100 to 102m scale with predictors typically available at the 102 to 105-m scale. In addition, 
the definition of relevant scales is often difficult (e.g. Archfield et al., 2015). The complexity of 
adding coarse predictors to the classification can be assessed using Data Complexity Measures 
(Ho and Basu 2002; Lorena et al., 2018 DCM). DCMs inform on the linearity of the problem, the 
complexity of the class boundaries as well as the underlying structure of the observations within 
the predictor space. DCM can be used to filter the predictors (e.g. Garcia, Carvalho, and Lorena 
2015) that ultimately make the problem more complex by including noise from irrelevant or coarse 
predictors. After assessing the problem complexity with the initial complete set of all predictors, 
complexity was evaluated when removing the fractal dimension predictors, the stream network 
topology metrics, and the contextual variables. 

2.1.2 Assessing the Performance of Classifiers in Statistical Learning 

The classification is performed by a classifier, an algorithm that inputs predictor variables and 
outputs classified stream segment observations. The accuracy of a classifier corresponds to the 
number of predicted labels that match the observed labels. The set of parameters that produces the 
most accurate predictions for a given classifier is determined in the training phase using the 
predictors extracted at the location of the field surveys and their associated channel type. 

The classifier with the best performance is often unknown at the start, so Luengo and Herrera 
(2013) proposed a range of DCMs to assess effective classifiers. DCMs computed to filter the 
predictors were used to determine best classifiers, and 11 different machine learning algorithms 
were tested: Partial Least Squares (PLS); Naive Bayes (NB); Multivariate Adaptive Regression 
Splines (MARS); SVM with linear (L-SVM) and radial kernel (R-SVM); 𝑘𝑘-Nearest Neighbors (𝑘𝑘-
NN); Classification And Regression Tree (CART); bagged-trees (BaT); Random Forest (RF); 
Linear Discriminant Analysis (LDA); Flexible Discriminant Analysis (FDA); Regularized Linear 
Discriminant Analysis (RLDA); Artificial Neural Network (ANN).  

Two key algorithms considered, SVM and RF, are described below (for additional information see 
e.g. Shen 2018; Shen et al., 2018; Rahmati et al., 2017). Implementation of the algorithms was 
performed using the R packages caret (Kuhn 2008; Kuhn and others 2018) and h2o (H2O.ai 2018): 

A linear SVM finds the linear boundary between two distinct classes so that it maximizes the 
margin between the boundary and each class closest point(s). Those points are the support vectors 
for the boundary. More flexible decision boundaries (i.e. non-linear) can be obtained by a non-
linear kernel version of the SVM, that is transforming the predictor space in such a way that the 



problem becomes linearly solvable in the transformed predictor space. The most common kernel 
used to perform such a “kernel trick” is the radial basis function. Both for L-SVM and R-SVM, 
solving a multi-class problem is achieved by breaking it down in a set of binary problems. 

Random Forest is an ensemble model combining regression trees (i.e. the forest) and is widely 
used in natural sciences, especially ecology. Each individual regression tree is built from a random 
subset of the predictors. Tuning is usually performed on the number of predictors included in each 
tree, 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 but tuning the number of trees and sample size has been found to be valuable (Probst, 
Wright, and Boulesteix 2018). In addition, RF appears to be robust to predictors noise (e.g. Fox et 
al., 2017). 

Most classifiers are defined so that some pre-processing steps are required. One common step is 
to deal with class imbalance (see below) which requires the following steps to be taken: centering 
and scaling predictors; and dealing with missing values with 𝑘𝑘-NN imputation. A combination of 
additional preprocessing steps were also tested: Box-Cox transformations; removing near-zero 
variance predictors; removing correlated predictors; and transforming predictors with Principal 
Component Analysis (PCA) or Independent Component Analysis (ICA). In addition to centering 
and scaling, Box-Cox transformations attempt to collapse the distribution of each predictor to a 
normal distribution – an assumption behind numerous classifiers (e.g. Csillik, Evans, and Drăguţ 
2015). 

The datasets used in machine learning applications are often divided into a training set and a testing 
set; the training set is used to tune the hyper-parameters and the training set to assess the accuracy. 
In the case of smaller dataset, resampling allows all data to be used both in training and in testing. 
The most common resampling is the 𝜈𝜈-fold cross-validation (Burman 1989) with 𝜈𝜈 = 10. In such 
10-fold cross-validation, the data are randomly separated in 10 parts or folds. Successively, 1 fold 
is held out and the 9 other folds are used to train the classifier. The performance of the classifiers 
is assessed against the hold-out fold. The reported accuracy is then often the median over 10 cross-
validation accuracies and yields an estimate of the performance of the classifier against unseen 
data. In our case, 20 repeats of 10-fold cross-validation were used to address the bias that might 
be introduced by the initial random selection of the folds. The median cross-validation accuracies 
were estimated over the accuracy from 200 different folds. 

Spatial cross-validation (Schratz et al., 2018) is a variant of the standard 𝜈𝜈-fold cross-validation 
which addresses the issue of spatial correlation between the training data points. Spatial cross-
validation ensures that the hold-out folds are spatially disjointed from the training folds. The folds 
are created from the coordinates of the training set points using the 𝑘𝑘-means algorithm (Hartigan 
and Wong 1979). In a multiclass problem such as ours, with an expected significant spatial 
variability, ensuring that each fold contains examples of all classes is complex. Regular cross-
validation with stratified folds and spatial cross-validation were compared and the heterogeneity 
of the spatial cross-validation folds was assessed. 

To address the unbalance of the training set (Table 3), the Synthetic Minority Oversampling 
Technique (SMOTE) was used (Chawla et al., 2002). SMOTE relies on assigning predictors along 
the edges connecting the 𝑘𝑘-nearest neighbours from randomly selected observations. As synthetic 
data points need to be included in the spatial cross-validation scheme, spatial cooridnates must be 
reliably assigned. SMOTE was used to generate the synthetic predictors and the required 



geographic information was derived using a Gaussian noise with perturbation of 10% on the 
position of the observation selected by the SMOTE. 

For each run and for each classifier, the set of best hyper-parameters was selected with a grid 
search across 20 different values per parameter. The one-standard-error rule was applied, selecting 
the simplest set of hyper-parameters within one-standard-deviation of the most accurate set of 
hyper-parameters. The best model was selected from these runs based on its median cross-
validation accuracy. A paired 𝑡𝑡-test between the distribution of cross-validation accuracies from 
the best classifier and other classifiers was performed to assess their similarity. These additional 
classifiers are also reported. 

In total, the 7 following runs were performed: 

• base-a: imbalanced classes 
• base-b: imbalanced classes; without StreamCat predictors 
• SpCV-b: imbalanced classes; without StreamCat predictors; spatial-cross-validation; 
• SMOTE-a: balanced classes 
• SMOTE-b: balanced classes; without StreamCat predictors 
• SpCV-SMOTE-a: balanced classes; spatial-cross-validation; 
• SpCV-SMOTE-b: balanced classes; without StreamCat predictors; spatial-cross-

validation; 

In a base run, the class imbalance was left untouched. In SMOTE runs, the class imbalance was 
dealt with using the 𝑘𝑘-NN-based SMOTE algorithm which creates duplicate observations with a 
non-parametrized random noise. In SpCV runs, a spatial cross-validation was performed. 

2.1.3 Estimating the Stability of the Spatial Predictions of Channel Types 

The statistical learning selects either one or multiple classifiers as the most accurate. Before 
assessing the stabilitiy of their predictions, the posterior probabilities of each classifier, that is the 
probability of an observation to be of a given class, are calibrated. This calibration improves 
classifiers performance (Zadrozny 2002; Niculescu-Mizil and Caruana 2005). In that regards, few 
approaches are common practice: acknowledging the sigmoid-shape of most reliability plots, Platt 
and others (1999) proposed a sigmoid calibration to correct for this effect. Other useful approaches 
include Bayesian calibration and isotonic scaling (Zadrozny and Elkan 2002). Hereafter, we 
present results from classifiers which posterior calibration was performed using a multinomial 
regression. Such approach is a straightforward extension of the binomial case corresponding to the 
logistic Platt’s scaling (Platt and others 1999). The R package glmnet was used to fit a generalized 
linear model with an elastic net penalty and with a 10-fold cross-validation. 

Calibrated classifiers provide more accurate predictions but the stability of their predictions needs 
to be assessed. Importantly, estimating spatial stability is built upon the premise that channel types 
are organized hierarchically within the landscape. In other words, it is expected that combination 
of channel types are restricted to certain specific areas. 

Such a stability assessment was performed using spatial statistics. First, all stream segments were 
converted to points using their midpoint as reference. Then, 10 rasters of the relative risk were 



computed. Relative risks correspond here to the spatially varying estimate of the probability of 
each of the 10 classes to occur. As this is a non-parametric estimate using kernel smoothing, one 
key point is the selection of the bandwidth with which the relative risk is computed. The bandwidth 
value determines the amount of smoothing introduced by the Gaussian kernel: large bandwidth 
values correspond to a high degree of smoothing and vice-versa. 

There is no general rule for selecting the appropriate bandwidth so bandwidth was selected as the 
mean value between: (i) the median length of the stream segments as defined in the NHDPlusV2; 
(ii) the mean length of the stream segments as defined in the NHDPlusV2; (iii) the inflexion point 
of the Ripley’s 𝐾𝐾 and Besag’s 𝐿𝐿 function; (iv) the inflexion point of the pair correlation function 
𝑔𝑔(𝑟𝑟). The Ripley’s 𝐾𝐾, Besag’s 𝐿𝐿 and the pair correlation 𝑔𝑔(𝑟𝑟) functions characterize a point pattern 
(e.g. Illian et al., 2008). In particular, they identify how the clustering evolves with increasing 
spatial scale. An inflexion point marks the scale at which the clustering starts to slow down with 
increasing scale and was estimated using a segmented linear regression. After the kernel 
computation at the right bandwidth, the domain outside from the concave boundaries of the set of 
each class points was masked from the relative risk rasters. This constrains the probability 
estimates to the spatial domain within which each class was observed. 

Evenness, richness and entropy raster were then computed (Thoms et al. 2018). Richness is the 
number of classes with significant occurrence of probability 𝑝𝑝𝑖𝑖 at a given location. A significant 
probability was defined as being higher than the no-information rate of the problem (i.e. 1 10⁄ =
.1). Evenness or Simpson’s evenness index is defined as 𝐸𝐸 = 𝐷𝐷

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
 with 𝐷𝐷 = 1

∑𝑝𝑝𝑖𝑖2
. Shannon-

Weiner’s entropy or diversity is defined as 𝐻𝐻′ = −∑𝑝𝑝𝑖𝑖𝑙𝑙𝑚𝑚 𝑝𝑝𝑖𝑖. In statistical mechanics, entropy 
corresponds to the notion of disorder with higher entropy linked to a higher number of possible 
state for a given particle in a gas (e.g. Gibbs 1902). These metrics were used by Thoms, Scown, 
and Flotemersch (2018) to characterize the diversity of physical typology of river networks and 
defined functional process zones that is areas with similar hydro-geomorphic characteristics. 
Interestingly, the concept of entropy also connects back to earlier studies from Leopold and 
Langbein (1962); Scheidegger (1964, 1967, 1968a,b) linking statistical mechanics and 
geomorphology. In our case, the entropy of the predictions was used to select the classifier that 
produced the most stable predictions that is the predictions with the lowest entropy. 

2.1.4 Assessing the Geomorphic Relevance of the Predictions 

The most accurate and stable classifier was selected to perform the final classification. The 
resulting map of predicted channel types was investigated using expert-knowledge, with a focus 
on the general spatial organization of channel types across the Sacramento Basin landscapes as 
well as their geomorphic relevance. Aerial imagery was used to confirm predictions at selected 
sample locations. In addition, for each stream segment, the richness, evenness and entropy of the 
posterior probabilities were calculated. A map of the entropy of each stream segment was then 
produced to estimate the stability of the predictions at the stream segment scale. Finally, the 
variable importance of predictors was investigated to provide a gray box model rather than a non-
interpretable black box. 



2.2 Results 
In this section, the results from our four-fold machine learning framework are presented. In 
particular, we describe in the following how: (i) removing coarse-scale contextual predictors leads 
to a simpler classification problem; (ii) Support Vector Machine and Random Forest outperform 
other classifiers (iii) spatial statistics highlight the higher stability of Random Forest predictions; 
and (iv) Random Forest predictions capture the large-scale organization of the landscape. 

2.2.1 Removing Coarse-scale Contextual Predictors Leads to a Simpler 
Classification Problem 

Data Complexity Measures (DCM) were computed for each pair of classes and for a set of DCM 
categories (Fig. 15). This detailed account of complexity informs that the problem should be 
tractable. In particular, the overall low value of the linearity measures indicates that linear class 
boundaries should be found. Conversely, neighborhood based methods (e.g. 𝑘𝑘-NN) should 
perform worse than linear classifiers. The overlapping of classes in the predictor space highlights 
which classes are expected to be harder to separate. Here, the unconfined classes 1 and 10 are 
shown to be more easily discriminated from other classes. In contrast, the pair of classes that are 
expected to be the hardest to separate is classes 4 vs 3. 



Figure 15. Summmary of complexity measures for each pair of classes. The Data Complexity Measures (DCM) were computed 
following (Lorena et al., 2018) and were grouped by the following categories: overlapping, neighborhood, linearity, dimensionality, 
balance and network DCMs. As each categories pertain to a different number of DCM, the score for each category and class pairs is 
a normalized sum with signed unitary weights to account for complexity increase or decrease with each specific DCM. For each pair 
of classes, values for between 0 and 1, with 0 indicating a simple problem and 1 a complex one.



The specific values of the DCM were compared to the set of rules from Luengo and Herrera (2013). 
In that regard, both SVM-based and tree-based classifiers were moderately well-behaved and 
torelably ill-behaved, meeting 2/9 and 4/11 rules, respectively. Furthermore, removing the 
StreamCat predictors decreased the overall complexity of the problem. The problem has then better 
dimensionality, features with a better discriminative power and the same performance in terms of 
linear separation between classes but higher degree of non-linearity. Removing the contextual 
variables also led to an increase in the neighborhood DCMs indicating a slightly more complex 
decision boundary. Nonetheless, network DCMs showed that data points are more clustered and 
with more hubs in the predictor space. In contrast, removing stream order or fractal dimension 
predictors increased the complexity of the classification problem across all DCMs. In particular, 
removing the fractal dimension predictors worsened the network DCMs indicating a more 
disconnected and less clustered network of data points in the predictor space. Nonetheless, 
removing the fractal dimension predictions makes some of the predictors more significantly more 
prevalent at separating classes. 

The removal of the coarse contextual variable does not impede overall run accuracy (Table 4). 
Balancing the classes with SMOTE significantly improves the accuracy of the predictions. 
Conversely, using the spatial cross-validation (SpCV) leads to decreased accuracy for all runs. 
Therefore, results are described from the run using spatial cross-validation, SMOTE and without 
coarse contextual predictors (SpCV-SMOTE-b, Table 4). 

Table 4. Results from the different runs performed. The maximum value for the median cross-
validation is reported for each run as well as the best classifier(s). If more than one classifier is 
reported, this means that the distributions of the cross-validation of these classifiers are 
indistinguishable from a statistical point of view. 

run base-a base-b SpCV-b 
SMOTE-

a 
SMOTE-

b 
SpCV-

SMOTE-a 
SpCV-

SMOTE-b† 
max median x-val acc 0.39 0.38 0.34 0.7 0.7 0.6 0.61 
 MARS MARS MARS R-SVM R-SVM L-SVM L-SVM 
best classifier(s) FDA FDA FDA   R-SVM RF 

   RF 
CART 
(RF*)    R-SVM 

a: with StreamCat predictors       
b: without StreamCat predictors      
base: imbalanced classes       
SMOTE: classes balanced with SMOTE algorithm     
SpCV: Spatial Cross Validation      
†: run selected        
*: RF achieved a high accuracy but was not statistically similar to MARS  

 



2.2.2 Support Vector Machine and Random Forest Outperform other 
Classifiers 

From the statistical learning step of our four-fold framework, three classifiers emerge as the most 
accurate: Linear SVM, Radial SVM and Random Forest (Fig. 16). Linear SVM had the lowest 
computational cost (<1 minute), radial SVM and RF were the most costly (>2 hours). Since linear 
SVM is a simpler model than radial, only L-SVM results were considered and we compared RF 
and L-SVM spatial predictions. 

 

Figure 16. Distributions of cross-validation accuracies for all classifiers for the SpCV-SMOTE-b 
run (Table 3). Corr indicates that Box-Cox transformations were applied when required; NZV 
means that the predictors with Near-Zero-Variance were filtered; ICA and PCA mean that 
Independant Component Analysis and Principal Component Analysis were performed on the 
predictors, respectively. 



2.2.3 Spatial Statistics Highlight the Higher Stability of Random Forest 
Predictions 

Posterior probability scaling was performed to improve the predictive power of L-SVM and RF 
model. The results of that process are shown in Fig. 17 for RF; similar results were obtained for 
L-SVM. Calibration pushes the probability towards the diagonal so that the observed probabilities 
more closely match the true classes. In addition, this highlights where the RF model seems highly 
confident. Classes with posterior probabilities further from 1 are harder to discriminate (Fig. 15). 

Spatial statistics were used to assess the prediction stability using RF and LSVM classifiers. These 
methods rely on a characteristic length-scale or bandwidth computed as the average of four 
measures: (i) the median length of the stream segments from NHDv2Plus, 967.2 m; (ii) the mean 
length of the stream segments from NHDv2Plus, 1464 m; (iii) the inflexion point of the Besag’s 
𝐿𝐿 function, 1163 ± 16.04 m; (iv) the inflexion point of the pair correlation function 𝑔𝑔(𝑟𝑟), 653.4 ±
8.104 m. Averaging yielded a bandwidth of 1062 ≃ 1000 m to derive the relative risk rasters. 
Maps also computed the bandwidth derived from Stoyan’s rule of thumb of 537.7 m. Nonetheless, 
these maps showed very little difference with the maps produced according our procedure for 
selecting the appropriate bandwidth. 

Comparison of the spatial statistics of the SVM and RF predictions shows similar spatial patterns 
in the probability of occurrence of each of the 10 classes (Fig. 18). Two notable exceptions are the 
distributions of hotspots for class 5 and 10. In addition, RF predictions achieve higher probability 
as shown by the generally darker and bluer shades (Fig. 18). These higher probabilities translate 
into an overall entropy over the prediction domain that is lower for RF than for L-SVM (Fig. 19). 
Hence, the predictions from the RF classifier are more stable than the ones from the L-SVM 
classifier. This difference might be explained by the evidenced performance of RF for 
classification and spatial extrapolation. In addition, RF hyper-parameter 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 best value is 17; a 
value low enough so that the trees of the forest are not significantly correlated making the ensemble 
process more stable (Probst et al., 2018). In contrast, the best value of the cost parameter of the 
LSVM is 𝐶𝐶 = 0.25 < 1 meaning that the accuracy of the LSVM comes at the cost of some under-
fitting translating into poorer predictions for data unseen in training as the class boundaries may 
not be well constrained. 

 



Figure 17. Results of the posterior probability scaling for Random Forest. This figure is analogous to a reliability plot, with the 
vertical axis corresponding to training observations. These points are sorted by classes so that points that have the label 1 are at the 
bottom of the vertical axis whereas points with class 10 are at the top. a-b) Each row displays the posterior probabilities that the 
observation belongs to each of the 10 classes (horizontal axis). An ideal model would yield a yellow diagonal line showing a very high 
probability of belonging to the true class of the observation. a) corresponds to probabilities before calibration, b) is the output from 
the calibration and c) represents the difference between a) and b).



 
 

Figure 18. Relative risk maps for the 10 hydro-geomorphic classes identified in the Sacramento 
Basin. First and second row pertain to the RF model predictions; third and fourth rows 



correspond to the predictions from L-SVM. The appropriate bandwidth of the smoothing kernel 
was determined to be ∼ 1000 m. 

 

Figure 19. Map of the stability of predictions at the basin scale from the Shannon-Weiner’s 
entropy of the RF and L-SVM classifiers. The entropy value is computed from the relative risks 
maps (Fig. 18). A low entropy indicates the number of significantly probable channel types  is 
lower and thus that the classifier prediction are stable. A higher entropy means that the number 
of significantly probable channel types  is higher and thus that the classifier prediction are more 
unstable. 

 

2.2.4 Random Forest Predictions Capture Large-scale Landscape 
Organization 

The geomorphic relevance of the predictions from the RF classifier was investigated. An overview 
of RF predictions of channel type (Fig. 20) shows that the large-scale organization of the landscape 
with channel types occurring where expected e.g. unconfined meandering stream in the Central 



Valley, boulder heavy step-pools in the mountainous areas (see also Section 1.3.1). Additional 
investigations of the predictions were done in combination with aerial imagery and showed a 
general good agreement. However, in some areas the predictions did not correspond to what an 
expert would predict with the caveat that vegetation often impedes a highly confident expert 
judgment. Hence, at a smaller scale, predictions appear noisier with a level of misclassification 
that could be expected both from the pairwise DCMs analysis (Fig. 15) and from the median cross-
validation accuracy (61%). 

To provide a quantitative assessment of the uncertainty of the predictions, the entropy from the 
posterior probabilities associated to each stream segments was derived (Fig. 21). The predictions 
from the RF appear highly stable in the Central Valley, with more uncertainties in the mountainous 
area and a high level of instability in the Modoc Plateau. Interestingly, the entropy has a non-linear 
relationship with elevation throughout the Sierra Nevada towards the Central Valley as highlighted 
by the profile through the Feather River catchment (Fig. 22). In particular, this highlights the Sierra 
foothills as an area where the number of significantly probable channel types increases markedly. 
This pivotal area corresponds to the boundary between the orogen of the Sierra Nevada and the 
foreland basin of the Central Valley. Significant concentration both in discharge and sediment load 
is expected to occur at that location. The combination of these factors coupled with the remaining 
potential energy from the elevation and with the shift in confinement explains the higher number 
of channel types statistically probable for a stream segment.  

The variable importance plot for the RF classifier clarifies in part the black box nature of some 
machine learning approaches (Fig. 23). Three variables appear significantly more important than 
the other predictors: valley confinement, drainage area and stream order. Apart from this 3 
variables, channel slope and LDD, the most important predictors are dominated by fractal 
dimension predictors (Hurst coefficients) underlining their relevance. This finding was already 
suggested by the DCM analysis and is supported by similar variable importance from the Deep 
Artificial Neural Network (which underperformed in statistical learning). 



 

Figure 20. Map of the Sacramento Basin with the spatial predictions of the 10 types of channel. 

 



 

Figure 21. Map of the Sacramento Basin with the entropy of each spatial predictions. The 
Feather River catchment is highlighted in blue (Fig. 22). 

 



 

 

Figure 22. Evolution of entropy and confinement with elevation in the Feather River catchment 
(Fig. 21).



 

Figure 23. Variable importance of the RF model.
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