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Abstract Optimal design of irrigation and water supply reservoirs under reliability constraints
may be categorized as large combinatorial optimization problems. In this paper, the reliability
based optimum design of a single water supply reservoir is formulated as a mixed integer
programming and a hybrid algorithm is introduced for its solution. To eliminate iterative
procedures in reliability-based reservoir design and operation, the reliability require-
ments are directly embedded into the modeling framework and treated as different sets
of constraints. Adaptive penalty method is used for constraint handling in the solution
methodology. The proposed algorithm couples an ant colony optimization (ACO)
optimizer with a virtual linear programing (LP) model for the solution of the resulted
NP-hard mixed integer nonlinear programming problem. Dez reservoir for irrigation
water supply with 480 months of inflow is used to demonstrate the method and its
performance. The structure and solution methodology is verified by the solution to the
inverse problem. It is shown that the proposed hybrid model can efficiently solve the
problem for various combinations of reliability measures in a multiple period model-
ing scheme. It is illustrated that under some circumstances and specific reliability
values, the mixed integer nonlinear programming (MINLP) solver may even fail to
address a feasible and local optimal solution. Although operating rule is not included
in the operational scheme, the procedure is capable of identifying coefficients for
decision rules with any proposed structure.
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1 Introduction

Reservoir analysis problem may be classified into (1) capacity determination, (2) long-term
operations planning, and (3) real time operation. Generally speaking, it hasa multitude decision
nature ranging from determination of optimum reservoir storage capacity for planning pur-
poses to deriving optimal reservoir operating policies for real time operation. Although the
general concepts (i.e., the relationship between inflow, performance criteria decision and state
variables such, reservoir storage and release, etc.…) for planning, design and/or operation
remains the same, the decision variables, objective functions, constraints and the structure of
models may vary for different types of reservoir problems (Simonovic 1992). Considering the
random nature of reservoir inflows, determination of minimum reservoir capacity for satisfying
a given demand with an acceptable level of reliability is often referred to as reservoir sizing
problem. It addresses one of the main problems in reservoir analysis. It determines the
minimum reservoir capacity required to meet a given demand with an acceptable
level of reliability.

Since their introduction by ReVelle et al. (1969), integration of linear decision rules
(LDR’s) with chance-constrained reservoir operating models have extensively been used for
direct determination of reservoir capacity and operation rule to meet specified releases and
storage volume reliability targets (Simonovic and Marino 1980 and 1982; Houck et al. 1980;
Afshar and Marino 1990; Afshar et al. 1991; Malekmohammadi 1998; Satishkumar et al.
2010). However, the chance-constrained programming approach, as an alternative to stochastic
programming that does include reliability in the optimization, has been criticized and reported
to generate very conservative solutions (Hogan et al. 1981). Criticizing the existing chance-
constraints reliability based models in optimizing reservoir designs, Strycharczyk and
Stedinger (1987) claimed that the reliability programming formulation of the reservoir man-
agement problem employs a very restrictive operating policy. In a numerical example the
reliability programming model’s constraints overestimated reservoir capacity requirements by
an order of magnitude. In a good documentary paper, Simonovic (1992) presented a reservoir
simulation-optimization model (RESER) which makes use of a direct search technique for
finding the minimum required capacity in two levels; namely optimization and simulation
levels. Minimum reservoir capacity for meeting water demands and reliability criteria are
determined and checked in optimization and simulation levels, respectively. If the desired
reliability is not met, the reservoir capacity is increased by a step size. The trial and error
procedure continues until the reliability constraints are satisfied. Without any doubt the
proposed “double-reliability” scheme has an advantage over other methods used for determin-
ing reservoir capacity. In a fairly recent study, Afzali et al. (2008) developed and successfully
applied a multi-reservoir reliability-based simulation model that uses an iterative single-period
linear programming (LP) in each time step to minimize the hydropower design parameters for
achieving a desired reliability in hydropower generation.

Reliability-based optimum reservoir design is a NP-hard Mixed-Integer Nonlinear pro-
gramming (MINLP) problem with both real and integer variables. Traditional methods (such
as branch-and-bound) for optimal solution of an NP-hard MINLP problem may fail to
converge to feasible solution and often requires long computation time, particularly for large
number of integer variables.

To relax the drawbacks of common MINLP solvers and realizing the computational
advantages of hybrid models in dealing with large NP-hard MINLP problems (Afshar et al.
2009a, b; Reis et al. 2005 and 2006); this paper presents a hybrid (ACO-LP) model for direct
minimization of reservoir capacity with reliability constraints. Reliability constraints are
embedded into the modeling framework to eliminate iterative procedures in reliability-based
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reservoir design and operation. Although operating rule is not included in the present modeling
scheme, the proposed procedure may easily be re- formulated to identify rules coefficients in a
reservoir operation problem. Both, the mathematical formulation and the solution procedure,
may easily be expanded for reliability-based hydropower reservoir design. Using Dez water
supply reservoir as a case example, the paper demonstrates the method and its performance in
a large multi-period problem. Historical inflows for 480 months are used to obtain the
minimum capacity under various pre-specified reliability levels. The structure of the model
and solution methodology is validated by the solution to the inverse problem. To compare and
verify performance of the proposed approach, results are compared with those of a branch and
bound MINLP solver and checked against those achieved using another hybrid model.

1.1 Reliability-Based Optimization of Reservoir Design

In a deterministic design optimization, the designs are often bonded with the design con-
straints, leaving little or no latitude for uncertainties and chance of failure. Robust design
optimization and reliability based design optimization are among the methodologies that may
be used to address the uncertainties in designs.

Robust designs are designs at which the variation in the performance functions is kept
minimal. Reliable designs, on the other hand, keep the chance of failure of the system within
pre-specified low values (Agarwal 2004). Reliability based optimum design (RBOD) deals
with obtaining optimal design characterized by a predefined probability of failure. In RBOD
problems, there is a trade-off between obtaining higher reliability and lowering cost, if
justified. In a RBOD formulation, the critical failure modes in deterministic optimization are
replaced with a single or set of constraints on probabilities of failures. Generally speaking,
RBOD intends to optimize a merit function while satisfying set of reliability constraints. The
reliability constraints address the probability of failure corresponding to each of the failure
modes of the system or a single constraint on the system probability of failure (Agarwal 2004).

Reservoir reliability is defined as the probability that the reservoir will perform the required
function, i.e., provide the outflow required to satisfy the water demand, at a specified period of
time under stated conditions. In accordance with engineering standards of care, reservoirs are
to be designed to provide stability and durability. The reservoir design criteria are not intended
to establish any particular design approach, but rather to ensure water system adequacy,
reliability, and compatibility with existing and future conditions.

The reliability of a system is the probability of the system’s successful performance in the
specific period of time under determined conditions (Chow et al. 1988). Based on this
definition the reliability (α) of an event ω with the probability of P[ω] may mathematically
be presented as.

α :¼ P L tð Þ < C tð Þ; t∈Π½ � ¼: 1−β ð1Þ

Where β is the probability of failure, L(t) and C(t) are the loading and capacity, respectively,Π
is the planning time horizon.

Using the reliability concept as defined, the reservoir design problem may be formulated as
a reliability-based optimization model in which the reservoir capacity may be minimized for a
given set of performance reliabilities over the operation horizon. For irrigation water supply
reservoirs it is common to set two types of reliabilities on releases. The first constrain may
commit the operator to satisfy the full demand with a predefined reliability level (α). For the
periods of failure, in which the demand has not been fully satisfied, the shortage (deficit) may
not exceed a pre-specified fraction of the total demand (β). In another word, the release may

Reliability Based Optimum Reservoir Design by ACO-LP
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never be smaller than a fraction of demand specified by (γ). Realizing the stochasticity of the
inflow to the reservoir, the problem may be formulated as a mixed integer optimization
problem with a NP-hard structure.

The objective function of the problem in this research is the minimization of the reservoir
capacity under desired reliability.

Minimize Capð Þ ð2Þ

Subject to the following constraints:

Stþ1 ¼ St þ I t−Et−RKt−RSt ∀t ¼ 1; 2;…; T ð3Þ

Smin≤St ≤Cap ∀t ¼ 1; 2;…; T ð4Þ

RSt ≥RE ∀t ¼ 1; 2;…; T ð5Þ

RKt ≥Zt � demkt ∀t ¼ 1; 2;…; T ð6Þ

RKt ≤demkt ∀t ¼ 1; 2;…; T ð7Þ

RKt ≥γ � demkt ∀t ¼ 1; 2;…; T ð8Þ

Areat ¼ a� St þ Stþ1ð Þ=2þ b ∀t ¼ 1; 2;…; T ð9Þ

Et ¼ het � Areat þ Areatþ1ð Þ=2 ∀t ¼ 1; 2;…; T ð10Þ

Rel ¼ ð
XT

t¼1

Zt Þ=ð
XT

t¼1

tÞ≥α ∀t ¼ 1; 2;…; T ð11Þ

ð
XT

t¼1

demkt−RKt Þ=ð
XT

t¼1

demktÞ≤β ∀t ¼ 1; 2;…; T ð12Þ

Zt ¼ 1 if demand is fully satisfied
o otherwise

�
∀t ¼ 1; 2;…; T ð13Þ

Where Cap is the maximum reservoir storage (decision variable), St is the reservoir storage, It
is the inflow to the reservoir, Et is the evaporation from reservoir, RKt is the release from
reservoir for agricultural demand, RSt is the release to downstream as spill and environmental
demand, Areat is the reservoir area, het is the net monthly evaporation height from the
reservoir, RE is the minimum required environmental flow, demkt is the agricultural demand,
Rel is the reliability, α is the reliability index and β is the normalized deficit index, and t stands
for period. One may note that in formulation of Eq. 3, both the spill from the reservoir and the
environmental flow are included in RSt, since both are released to the downstream. Constraint
defined by Eq. 5 satisfies the environmental flow released to downstream. Constraints number
6 and 7 force the release to be equal to the demand for the periods in which Z =1. For the
periods with Z =0, in which the demand may not totally be satisfied, agricultural release shall
not be less than a pre-specified fraction (γ) of the demand. This restriction is taken care of with
constraint number 8 in which the agricultural release will never fall below that limit. The
reliability and volumetric deficit constraints for the entire planning horizon are considered in
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Eqs. 11 and 12, respectively. Within the maximum and minimum operation levels, the
reservoir surface area is assumed to be a linear function of the storage volume (Eq. 9). Basedon
the existing data, the coefficients are estimated as a =0.0157 and b =11.291.

The reliability based optimum design problem addressed by Eqs. 2–13 is a mixed
integer nonlinear programing (MINLP) model with large number of integer variables
(Z). In fact the number of integer variables equals to the number of operational
periods if only one water user with defined reliability level is assumed. The number
of integer variables will double if another user with different target reliability is
imposed on the system. In this research we presented an ACO-LP for solution of
the proposed reliability based optimum design of the reservoir.

2 Proposed Hybrid Decomposition ACO-LP Algorithm

Application of hybrid algorithms for optimum design and/or operation of water
resources problems have a fairly recent origin (Cai et al. 2001; Reis et al. 2005,
2006). Combination of metaheuristic and/or evolutionary algorithms with a LP model
for decomposition and two stage solutions of highly non-linear and large scale water
resources problems have been quite satisfactory (Afshar et al. 2010). The basic concept
with the proposed hybrid algorithm is to decompose a large-scale nonlinear mixed
integer optimization problem between a search- based ACO sub-module and a large-
scale LP sub-modulel for handling the complicating and non-complicating variables,
respectively. In this study the reservoir capacity and integer variables are identified as
set of complicating variables.

The inter relation between the two sub-modules for solution of the reliability-based
reservoir design problem is presented in Fig. 1. In the proposed approach, the original
problem is decomposed into two sub-modules. The first sub-module employs ACO
algorithm as an efficient solver to minimize the reservoir capacity (original objective
function). To account for the nonfeasiblity of the trial solutions generated with the
ACO algorithm, the objective function is penalized with the total constraints viola-
tions. The total constraint violation is minimized in the second sub-module. The
second sub-module is a virtual LP model with the same general structure of the
original NLP model. It aims to minimize the total constraints’ violations for the trial
values of the decision variables as generated and tested in the first sub-module. In
other words, the generated solutions for complicating variables in the optimization
search-based ACO solver is imported into the virtual LP model to minimize the
constraints’ violations. The weighted sum of the constraints violation from the virtual
LP model is used to penalize the objective function in the original reliability based
design model. The propsed approach may mathematically be presented as:

Minimize : Capacityþ w� G ð14Þ

Where G =vector of constraints’ violations minimized in virtual LP model and w
=positive penalty assigned for constraints’ violations. Penalizing the original objective
function for constraint violation will facilitate the process in addressing the set of
feasible solutions.

The virtual LP model borrows its general structure from the original MINLP design
model with the objective of minimizing the sum of non-feasibilities for the trial values
for complicating variables generated with the ACO solver. The sum of infeasibilities

Reliability Based Optimum Reservoir Design by ACO-LP



Only
 fo

r R
ea

din
g 

Do N
ot 

Dow
nlo

ad

is defined as sum of the absolute values of deviations from the constraints. Thus, the
virtual LP model may be formulated as:

Minimize G ¼
Xm
i¼1

CSV i ∀ CSV i≥0 ð15Þ

Subject to:

f i xð Þ ¼ CSV i ∀ i ¼ 1;…;m ð16Þ
Where m =total number of the constraints; and CSVi =constraint violation for the ith constraint.
In this proble, CSVi refers to constraints 11 and 12 in original problem. Determination of the
value of penalty coefficient has always been a challenge in the use of meta-heuristic models to
solve the constrained problems. Large penalty coefficients often reduce the exploration by

 ACO 

Module 

OK 

Penalized main 

fitness function  

Minimize 

 Pheromone Updating 

for ACO Stop 

Condition 

NO
END 

ACO

Module 

START 

Generation of the first random population of 

complicated variables 

LP 
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All decision 

and state 
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Constraints 

violations for all 

population

NLP main 

model 

Minimize 

Simulation  

MURM Matrix 

Linearized model, second 
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constraints violations 

Minimize Constraints 
Violations 

Fig. 1 Descriptive flow chart of the general interrelation between the two sub-modules
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concentrating on limited search area and accelerating the convergence to a premature
solution and vice versa. Afshar (2008) and Afshar et al. (2009a, b) presented a
penalty adapting ant algorithm to eliminate the dependency of ant algorithms on the
penalty parameter used for the solution of constrained optimization problems. The
method uses an adapting mechanism for determination of the penalty parameter
leading to elimination of the costly process of penalty parameter tuning. This paper
employs the same iterative penalty method by modifying the penalty coefficient at any
iteration as.

gi ¼ φ
f i
f best

þ 1

� �
∀ i ¼ 1;…;m ð17Þ

Where gi is the value of the penalty coefficient to be used at the next i th iteration, φ
is a tunable constant parameter, fi is the objective function in iteration number i and
fbest is the best objective function until the i th iteration.

Employing the penalized objective function (Eq. 14), the reliability based optimi-
zation model will be solved by minimizing Eq. 14 subject to the constraints number
3–10. In this formulation, the reliability constraints defined earlier by Eqs. 11–12 are
now satisfied by the objective function of virtual LP (Eq. 15). Note that the virtual
LP sub-problem is formulated to minimize the total constrains violation with values of
complicating variables recommended by the ACO solver which aims at minimizing
the penalized objective function.

The proposed structure for the hybrid algorithm follows the structure proposed by
Afshar et al. (2009a, b) and slightly differs from that recommended by Cai et al.
(2001). In their work, the linearized model with the trial values of complicating
variables estimates the constraints’ violations and objective function values in one-
step procedure.

To handle the reliability constrains we employed the penalty approach by penalizing the
objective function. Rearranging the constraints number 11 and 12 along with introducing the
CSV as the violation from the reliability constraints we have:

CSV 1 ¼ ð

Xt

i¼1

zi

t
−αÞ ð18Þ

CSV 2 ¼ ð

Xt

i¼1

demkt−
Xt

i¼1

RKt

Xt

i¼1

demkt

−βÞ ð19Þ

Although the Branch and Bound algorithm is a powerful one, in some cases
with large number of integer decision variables and very restricted feasible zone, it
may fail.

The proposed hybrid algorithm starts with generating the initial trial solutions to define the
initial path in the ACO solver. The reservoir capacity and integer variables are identified as set
of complicating variables. For this 480-period reliability based optimum design problem, 481
complicating variables is identified which includes 480 integer values for Zt. The lower and

Reliability Based Optimum Reservoir Design by ACO-LP
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upper bounds on the reservoir capacity is defined and a random generator is employed
to generate the initial reservoir capacity and binary values for Zt in the entire periods.
The trial solutions with assumed values of the complicating variables are then
imported into the main MINLP design model to relax the nonlinearities and give it
a linear structure, named virtual LP model. The virtual LP model is then solved to
minimize a measure of total infeasibilities evaluated as sum of deviations from the
constraints. Solution to the virtual LP model will be imported into the ACO solver to
evaluate the fitness of the trial solutions as penalized objective function. New solu-
tions identified for the complicating decision variables in the ACO solver will be used
to reform the virtual LP for the new trial values of the decision variables. This
process continues until the sum of infeasibilities approaches zero and other termina-
tion criteria are met (Fig. 1).

3 Ant Colony Optimization (ACO); An Overview

Ant Colony Optimization is one of the most popular and efficient meta-heuristic algo-
rithms solving large scale optimization problems especially when the decision variables
are in discrete forms. Various versions of ACO in discrete and continuous domains, as
well as single or multiple objective structures, have been used to derive optimal design
and operating policies for various water resources problems (Abbaspour et al. 2001;
Maier et al. 2003; Afshar et al. 2009a, b). Kumar and Reddy (2006) compared the
performance of ACO algorithm with real coded GA to derive operating policies for a
multi-purpose reservoir system. They emphasized superior performance of ACO, espe-
cially in longtime horizon operation models. Although ACO algorithms were originally
proposed for discrete search spaces, it has successfully been applied to contiuous
domains in water resources problems (Jalali et al. 2007; Madadgar and Afshar 2009).
In ACO algorithms, the optimization search procedure is made by the number of
artificial ants. Each ant builds a solution, or a component of it, starting from an initial
state selected according to some problem dependent criteria. While building its own
solution, each ant collects information on the problem characteristics and on its own
performance, and uses this information to modify the representation of the problem, as
seen by the other ants. In an ACO algorithm, the decision policy can be expressed as
(Dorigo et al. 1996).

pi; j tð Þ ¼

τ i; j tð Þ ηi; j
h iβ

X
l: i;lð Þ∈θi

τ i;l tð Þ ηi;l
� �β q > q0

I
argmax

i;l∈θi
τ i; j tð Þ ηi; j

h iβ� � i; jð Þf g otherwise

8>>>>>>><
>>>>>>>:

ð20Þ

In Eq. 20, q ~uniform [0,1] and q0 is the exploration–exploitation factor (0≤q0≤1). If q>q0
in Eq. 20, the decision is governed by the same probabilistic decision equation as used in the
original ant system (AS) which α=1 and if q≤q0, the edge with the highest
τi,j(t)[ηi,j]

β value and zero probability is given to all other edges). For q≤q0 exploi-
tation is encouraged as the edge that has received the greatest amount of pheromone
addition will generally be selected, and for q>q0 exploration of alternate edges is
encouraged. Exploration receives higher emphasis as q0→1. In ant colony system

A. Afshar et al.
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(ACS), the pheromone is locally and globally updated. In “local” updating, the
pheromone on a selected edge by an ant is directly updated after it has generated
its solution. This degradation discourages the re-selection of edges within iteration and
works to balance the exploitative decision policy by further encouraging exploration
of alternate edges. The operation to locally update the pheromone of edge (i, j)
selected by an ant is.

τ i; j tð Þ←ρlτ i; j tð Þ þ 1−ρlð Þτ0 ð21Þ

In Eq. 21, ρl is the local pheromone decay coefficient, and τ0 is the initial pheromone
intensity laid on all edges. ACS also involves global updating (i.e., updating the pheromone
paths at the end of iteration when all m ants have generated their solutions). The global
updating rule in ACS is the same to that in AS, but in ACS only the path with the global-best
solution receives additional pheromone. The global updating rule is given by.

τ i; j tð Þ ¼ ρgτ i; j tð Þ þ 1−ρg
� �

Δτgbi; j tð Þ ð22Þ

In Eq. 22, ρg is the global pheromone decay coefficient and Δτi,j
gb(t) is given by.

Δτgbi; j tð Þ ¼
Q

f Sgb tð Þ	 
 ISgb tð Þ i; jð Þf g ð23Þ

In Eq. 23, Sgb(t) is the global best path found up to iteration t. The updating rule given in
Eq. 18 acts as an encouragement for exploitation, as only the best solution is reinforced with
additional pheromone.

Fig. 2 Dez reservoir location in southwest Iran

Reliability Based Optimum Reservoir Design by ACO-LP
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4 Application of the Model

4.1 Problem Setting and Case Study

To illustrate the performance of the proposed hybrid algorithm in solving reliability-based
optimum reservoir design problems, the Dez reservoir in southern Iran was selected as a case
study (Fig. 2). Relativly large standard deviation of the seasonal and total annual inflow to the
reservoir makes the design a reliabilty sensitive one and a good example for illustration of the
proposed approach. Monthly historical inflow to the reservoir for a 40-year period is presented
in Fig. 3. Table 1 presents the monthly agricultural demand for downstream irrigation use.
Average annual inflow to the reservoir and annual demand are estimated as 8500 and 5900
MCM, respectively. The Dez reservoir is already under operation with total storage capacity,
dead storage, and effective storage as 3340, 830, and 2510 MCM, respectively.

For partial verification of the model and its results, the performance of the model
is double checked with the inverse solution method in which the reliability (α) was
maximized for a fixed reservoir capacity. In the inverse model the constraints remain
the same as those of the original model. As expected, the same results were obtained
for the reliability. To validate the model its performance for large number of cases are
checked against those of classical MINLP and another hybride model. Its similar
performance in highly diverse water resources problems and their statistical analysis
and comparison remains to be tested.

5 Results and Discussion

The proposed ACO-LP hybrid model is used to find the set of optimum values of the Dez
reservoir capacity which are required to satisfy the specified agricultural demand under various
reliability and volumetric deficit measures. The problem was solved for design periods of 240,
and 480 periods under different reliability and volumetric deficit measures.
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Fig. 3 Monthly inflow to the reservoir

Table 1 Monthly irrigation demand (MCM)

Month May Jun July Aug Sept Oct Nov Dec Jan Feb Mar Apr

Irrigation demand 516.4 603.7 757.2 831.1 818.8 706 467.6 318 163 150.1 203 365.5

A. Afshar et al.
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For validation purpose and without intending to make a detail comparison and solid
conclusion, the results of the ACO-LP and the MINLP for a 240-period problem are presented
in Table 2. As expected, the MINLP solves the problem in relatively shorter time, provided
that a feasible solution is found. It is observed that the merits of the MINLP model diminishes
as the feasible zone narrows down by imposing higher limitations on reliability and β. As
illustrated, for some combinations of the reliability index and the maximum permissible deficit
in agricultural demand (β), the MINLP fails to locate a feasible solution. However, if a feasible
solution is found, the MINLP solver dominates the ACO-LP in computational time and the
quality of the results. Employing 40 years monthly inflow data, the verified ACO-LP model
was used to derive the optimal reservoir capacity for reliabilities ranging from 70 to 90 % for
various values of maximum permissible deficit in agricultural demand (β) and different
monthly water shortages (γ). For γ=0.5 and different values of α and β and 15,000 function
evaluations, results of the both ACO-LP and GA-LP hybrid models are presented in Table 3.
Although there are slight differences between the results for different combinations of α, β and
γ, it is difficult to strictly distinguish between their performances and merits. Similar perfor-
mance and results of ACO-LP and GA-LP may also be used as a measure of validation.
Slightly better performance from ACO-LP might be attributed to a unique feature of incre-
mental solution building mechanism in the ACO algorithm. This unique feature is quite
beneficial for constraint handling and trial feasible solution development. Results for other
values of maximum monthly water shortage measure, γ, and different combinations of α and β
for the same number of function evaluations are presented in Tables 4, 5 and 6. For most of the
cases the rate of increase or decrease in reservoir capacity is almost uniform with varying
values of α, β and γ. In some case, however, the rate of increase or decrease is quite

Table 2 Dez reservoir capacities (in 1000MCM) under different α and β and γ=0.7 for 240 month period

α=0.70 α=0.75 α=0.80 α=0.85 α=0.9

Model MILP ACO-LP MILP ACO-LP MILP ACO-LP MILP ACO-LP MILP ACO-LP

β=0.2 5.725 6.373 7.255 8.054 8.264 8.523 9.825 10.435 11.869 12.746

β=0.25 4.223 4.629 5.542 6.161 6.092 6.455 7.587 8.195 – 9.258

β=0.30 3.582 4.150 4.040 4.491 5.472 6.057 6.261 6.963 – 8.30

β=0.35 3.170 3.410 3.594 3.912 4.031 4.510 5.341 5.904 – 6.82

β=0.40 2.799 3.003 – 3.716 – 4.213 – 5.777 – 6.006

β=0.45 2.491 2.609 – 3.211 – 4.113 – 5.208 – 5.318

β=0.50 2.116 2.584 – 2.900 – 3.800 – 4.700 – 5.068

Table 3 Dez reservoir capacities (in 1000MCM) under different α and β and γ=0.5 for 480 month period

α=0.70 α=0.75 α=0.80 α=0.85 α=0.9

Model GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP

Function evaluation 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000

β=0.30 2.151 2.131 2.402 2.326 2.980 2.898 4.696 4.643 7.883 7.610

β=0.25 2.151 2.131 2.402 2.326 2.980 2.898 4.696 4.643 7.883 7.610

β=0.20 2.151 2.131 2.402 2.326 2.980 2.898 4.696 4.643 7.883 7.610

β=0.15 2.866 2.836 2.756 2.669 2.989 2.907 4.696 4.643 7.883 7.610

β=0.10 6.375 6.449 6.234 5.901 6.234 5.901 6.364 5.980 7.883 7.610

Reliability Based Optimum Reservoir Design by ACO-LP
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significant. As an example, for γ =0.5, and reliability levels of 0.70, 0.75, and 0.80, by
decreasing β from 0.15 to 0.10 the rate of increase in reservoir capacity exceeds
100 % (Table 3).

It is observed that the design capacity will change as the reliability varies for a fixed values
of β, and γ. For a fixed value of the reliability, however, the required design capacity may
remain unchanged for some ranges of β and given γ. As an example, for α=0.70 and γ=0.6
(Table 4), the required optimum reservoir capacity will remain 2.99 for values of β ranging
from 0.30 to 0.20. It will increase to 3.05 if the value of β is decreased to 0.15. It is interesting
to note how the required reservoir capacity will increase by almost 127 % (from 2.836 to 6.449
for α=0.70) as the maximum permissible deficit in agricultural demand (β) is reduced from
0.15 to 0.10 (Table 3). As the required reliability increases, the reservoir capacity becomes less
dependent on γ and the maximum permissible deficit in agricultural demand (β). Specifically
speaking, for very high values of the reliability (i.e., α=0.9), the reservoir capacity remains
unchanged for all values of β (Table 4).

As γ increases to 0.8 (Table 6), the reservoir capacity becomes fully independent of the
maximum permissible deficit in agricultural demand (β). In other words, for γ =0.80, the
reservoir capacity is only a function of the required reliability. This is well illustrated in
different columns of Table 6 where the optimum reservoir capacity is shown to be independent
of the β.

In another word, as γ increases, sensitivity of the optimum reservoir capacity with β
diminishes. Results presented in Table 6 clearly illustrate this fact. For γ=0.8, the optimum
reservoir capacity is only dependent on the reliability level and remains constant with β
ranging from 0.10 to 0.30. It is interesting to note that this observation held true when the
GA-LP model was used. For γ=0.7, excluding the results for β=0.1 (with reliability levels of

Table 4 Dez reservoir capacities under different α and β and γ=0.6 for 480 month period

α=0.70 α=0.75 α=0.80 α=0.85 α=0.9

Model GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP

Function evaluation 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000

β=0.30 3.111 2.99 3.205 2.962 4.617 4.472 6.685 6.451 9.508 9.156

β=0.25 3.111 2.99 3.205 2.962 4.617 4.472 6.707 6.451 9.508 9.156

β=0.20 3.111 2.99 3.205 2.962 4.617 4.472 6.707 6.451 9.508 9.156

β=0.15 3.186 3.05 3.205 2.962 4.617 4.472 6.707 6.451 9.508 9.156

β=0.10 6.125 6.01 6.125 6.01 6.125 6.01 6.707 6.451 9.508 9.156

Table 5 Dez reservoir capacities under different α and β and γ=0.7 for 480 month period

α=0.70 α=0.75 α=0.80 α=0.85 α=0.9

Model GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP

Function evaluation 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

β=0.30 5.046 4.587 5.963 5.668 7.310 7.039 9.031 8.548 12.236 11.134

β=0.25 5.046 4.587 5.963 5.668 7.310 7.039 9.031 8.548 12.236 11.134

β=0.20 5.046 4.587 5.963 5.668 7.310 7.039 9.031 8.548 12.236 11.134

β=0.15 5.046 4.587 5.963 5.668 7.310 7.039 9.031 8.548 12.236 11.134

β=0.10 6.455 6.042 6.455 6.042 7.310 7.039 9.031 8.548 12.236 11.134
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Only
 fo

r R
ea

din
g 

Do N
ot 

Dow
nlo

ad

0.70 and 0.75), the optimum reservoir capacity is dependent on the reliability levels and
remains independent of β (Table 5).

In this problem and the way it was mathematically structured, for a reasonable fixed
number of function evaluations, ACO-LP slightly outperforms GA-LP in locating the reliabil-
ity optimum reservoir capacity for varying reliability and normalized deficit index. Although
conflicting performances from different search- based algorithms have been reported, the
extraction of solid conclusion had shown to be extremely difficult, if not impossible.
Therefore, other search algorithms in the general hybrid structure could have equally
been used to check the performance of the proposed ACO-LP algorithm. Please note
that we do not seek to generalize our findings, make a statistical comparison of the
results, and/or draw solid concluding remarks on their performances. Without trying to
generalize our findings, the proposed ACO-LP algorithm slightly outperformed the
GA-LP model for most of the cases tested in this simple example. Its similar
performance in highly diverse water resources problems and their statistical analysis
and comparison remains to be tested.

6 Conclusion

An ACO-LP hybrid model was proposed for optimum design of single water supply reservoir
under reliability and volumetric deficit constraints. Efficient decomposition approach was
developed and tested for the solution of the problem. The reliability-based optimization
problem was formulated as a mixed integer program and solved with the proposed hybrid
ACO-LP. The iterative penalty method easily and efficiently handled the reliability constraints
in the solution procedure. The algorithm succeeded in solving the problem for all combinations
of reliability levels and volumetric deficit index, as well as pre-specified fraction (γ) of the
demand. It was shown how sensitivity of the optimum reservoir capacity with β diminished as
γ increased. For the case under study, decreasing β from 0.85 to 0.90 for some small values of
γ and reliability levels of 0.70, 0.75, and 0.80, doubled the required reservoir capacity. It was
concluded that the sensitivity of the optimum reservoir capacity with β would
diminish as γ increased.

It was observed that under special circumstances and under specific reliability values the
common mixed integer solvers (i.e., branch-and-bound) may fail to identify the existing
feasible solution for the problems with very narrow feasible zone. Under different reliability
and volumetric deficit constraints and fixed number of function evaluations, Although oper-
ating rule was not included in the operational scheme, the procedure is capable of combining
the operation rule with the design optimization.

Table 6 Dez reservoir capacities under different α and β and γ=0.8 for 480 month period

α=0.70 α=0.75 α=0.80 α=0.85 α=0.9

Model GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP GA-LP ACO-LP

Function evaluation 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

β=0.30 9.559 8.935 9.687 9.069 10.343 9.825 14.343 12.661 17.792 15.656

β=0.25 9.559 8.935 9.687 9.069 10.343 9.825 14.343 12.661 17.792 15.656

β=0.20 9.559 8.935 9.687 9.069 10.343 9.825 14.343 12.661 17.792 15.656

β=0.15 9.559 8.935 9.687 9.069 10.343 9.825 14.343 12.661 17.799 15.656

β=0.10 9.559 8.935 9.687 9.069 10.343 9.825 14.343 12.661 17.799 15.656

Reliability Based Optimum Reservoir Design by ACO-LP
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