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Highlights         24 

● A new signal processing algorithm identifies seasonal transitions from daily flow data. 25 

● Application to 223 unimpaired gages in California highlights algorithm performance. 26 

● Algorithm identifies statistically distinct seasonal timing across diverse flow regimes. 27 

Abstract 28 

Seasonal flow transitions between wet and dry conditions are a primary control on river conditions, 29 

including biogeochemical processes and aquatic life-history strategies. In regions like California with 30 

highly seasonal flow patterns and immense interannual variability, a rigorous approach is needed to 31 

accurately identify and quantify seasonal flow transitions from the annual flow regime. Drawing on 32 

signal processing theory, this study develops a transferable approach to detect the timing of seasonal 33 

flow transitions from daily streamflow time series using an iterative smoothing, feature detection, and 34 

windowing methodology. The approach is shown to accurately identify and characterize seasonal flows 35 

across highly variable natural flow regimes in California. A quantitative error assessment validated the 36 

accuracy of the approach, finding that inaccuracies in seasonal timing identification did not exceed 37 

10%, with infrequent exceptions. Results for seasonal timing were also used to highlight the 38 

statistically distinct timing found across streams with varying climatic drivers in California. The 39 

proposed approach improves understanding of spatial and temporal trends in hydrologic processes and 40 

climate conditions across complex landscapes and informs environmental water management efforts 41 

by delineating timing of seasonal flows. 42 
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1. Introduction 48 

Streams and rivers in semi-arid/Mediterranean climates are physically, chemically, and biologically 49 

driven by predictable, seasonal periods of wet and dry conditions over an annual cycle (Gasith and 50 

Resh 1999). Seasonal flow regimes support predictable river processes such as disturbance regimes 51 

(Rood et al. 2005), seasonal habitat provision (Aadland 1993; Booker and Acreman 2007; Jacobson 52 

2013), and native species life-history cues (Yarnell et al. 2010). While streamflow characteristics 53 

including magnitude, duration, frequency, and rate of change are useful for describing components of 54 

the flow regime (Poff et al. 1997), the timing of seasonal flow transitions within the annual flow 55 

regime is particularly important for understanding seasonally-adapted ecological processes such as 56 

migration, spawning, or vegetation recruitment (Cambray 1991; Greet et al. 2011; Poff and 57 

Zimmerman 2010). It is critical to identify these distinct wet and dry conditions and when they occur 58 

across different flow regimes to improve understanding of physical climate and watershed controls on 59 

these seasonal transitions and their sensitivity to change. 60 

 61 

Numerical descriptors of the flow regime, known as flow metrics, are routinely quantified from daily 62 

streamflow time series to link streamflow patterns to river processes (Buttle 2011; Poff and Ward 63 

1989) and biological response (Mazor et al. 2017; Olden and Poff 2003). Existing flow metrics used to 64 

identify and quantify the timing of seasonal flow transitions are limited, especially across large regions 65 

and in hydrologically variable settings. These measurements of timing are often simplified by 66 

calculating flow metrics within predetermined timing windows instead of identifying the occurrence of 67 

seasonal transitions and key events based on annual flow patterns. The Hydroecological Integrity 68 

Assessment Process (Henriksen et al. 2006) and the Indicators of Hydrologic Alteration (Richter et al. 69 

1996) incorporate timing through calculations such as monthly average flows or the date of annual 70 

minimum and maximum flow. However, in variable flow regimes such as flashy rain-sourced streams, 71 

the timing of seasonal flow transitions varies significantly between water years and hydroclimatic 72 

settings (Lane et al. 2018). This wide inter-annual variability suggests that metrics describing a 73 

particular aspect of seasonal flow, such as dry season flow magnitude, cannot be accurately quantified 74 

based on the same months in each water year. Calculation of the annual maximum or minimum 75 
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similarly may oversimplify understanding of seasonal flow components, because these calculations do 76 

not account for annual or seasonal patterns of flow or events other than the most extreme conditions 77 

(Déry et al. 2009).  78 

 79 

To better quantify flow regimes based on variable seasonal patterns, signal processing techniques can 80 

be used to identify sub-annual hydrologic patterns from daily flow time series. Signal processing 81 

theory provides well-established techniques, such as data smoothing, peak detection, and time 82 

windowing, that have been applied in hydrology (Kusche et al. 2009; Mann 2004) and can be used to 83 

detect features from a time series of daily streamflow data. Time series smoothing is used to enhance 84 

certain frequencies (i.e., the signal) while attenuating others (i.e., the noise), and many smoothing 85 

techniques are available such as moving average, exponential moving average, empirical mode 86 

decomposition, regression smoothing (e.g. LOESS, Cleaveland and Loader 1996), wavelet, and splines 87 

(Janert 2010). Smoothing functions generate fitted curves to time series data that emphasize different 88 

frequency signals depending on the function and level of smoothing (Pollock 1999). Feature detection 89 

is used to extract peaks or valleys of interest from the smoothed data and can depend on attributes 90 

such as magnitude or slope (Schneider 2011; Scholkmann et al. 2012). Dynamic windowing around a 91 

detected feature constrains further analysis to a particular period of interest and allows for increased 92 

resolution of subsequent analysis (Palshikar 2009). 93 

  94 

In previous work, signal processing techniques have been applied to hydrologic time series for 95 

applications such as detecting long-term trends (Letcher et al. 2001), modeling hydrologic processes 96 

(Zhang et al. 2016), and predicting future trends (Adamowski and Sun 2010; Cannas et al. 2006). 97 

Common techniques such as harmonic analysis using Fourier or wavelet transform methods can be 98 

effective in analyzing hydrologic time series characteristics, such as periodicity, trends, coherence and 99 

cross-phase among deriving and response variables, or complexity determined by wavelet entropy 100 

(Pasternack and Hinnov 2003; Sang 2013). Additionally, many techniques have been developed to 101 

identify baseflow recession (Hall 1968); recent attempts include identifying a consecutive number of 102 

days of negative slope in the hydrograph (Bart and Hope 2014), combining requirements of negative 103 

slope with a percentile-based magnitude threshold (Sawaske and Freyberg 2014), or automatic 104 

identification of recession curves based on parameters balancing accuracy and coverage (Smith and 105 
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Schwartz 2017). While some methods share similarities with components of the proposed method, to 106 

the authors’ knowledge there has not yet been a method developed to automatically isolate and 107 

quantify all major seasonal flow transitions from annual streamflow time series.  108 

 109 

To identify ecologically significant flow transitions from the annual hydrograph, this study applied 110 

signal processing methods to identify functional flows found in the highly seasonal Mediterranean 111 

streams of California, USA. Functional flows refer to sub-annual aspects of the flow regime that 112 

support key ecological, geomorphic or biogeochemical processes in riverine systems (Escobar-Arias 113 

and Pasternack 2010; Yarnell et al. 2015). Yarnell et al. (2015) aggregated flow ecology literature to 114 

identify four functional flow components relevant to Mediterranean streams with a distinct wet and dry 115 

season: wet-season initiation flows, peak magnitude flows, spring recession flows, and dry-season low 116 

flows. Building on those efforts and more recent work highlighting key functional flows specific to 117 

California (Yarnell et al. 2020), this study identifies the timing of four functional flow components 118 

applicable to California’s natural streamflow regimes: fall pulse flow, wet season flow (encompassing 119 

both wet season baseflow and peak flow conditions), spring recession, and dry season baseflow (Fig. 120 

1). Once the timings of functional flow transitions are identified from the annual hydrograph, each 121 

functional flow component can be further quantified using additional flow metrics such as magnitude, 122 

timing, frequency, duration, or rate of change, and can be used to design functional flow regimes in 123 

managed river systems (Yarnell et al. 2020).  124 

 125 
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Fig. 1. Identification of the start timing of four functional flows identified for California (Yarnell et al. 126 

2020) using the proposed signal processing algorithm. The timing of flow transitions identified by the 127 

algorithm are marked with arrows. Hydrographs indicate the 10th, 25th, 50th, 75th, and 90th percentiles 128 

of flow in a mixed rain-snow river system (modified from Yarnell et al. 2020). A water year in 129 

California is defined as October 1 to September 30.  130 

 131 

Drawing on signal processing theory, this study develops an algorithm in the open-source Python 132 

programming language to calculate the timing of seasonal flow transitions from daily flow time series, 133 

allowing for improved characterization of seasonal flows. This research addresses the following 134 

questions: (1) is it possible to automatically identify timing of seasonal streamflow components from 135 

annual hydrographs, and if so what is the level of error?; and (2) does the timing of seasonal flow 136 

components calculated through this study reveal distinctions among streams with varying climatic 137 

drivers? Using data from the highly seasonal streams of California as a testbed, this study assesses 138 

the accuracy and limitations of the algorithm for quantifying functional flows across a wide range of 139 

natural flow regimes and climate conditions, including flow regimes exhibiting snowmelt, rain, or 140 

mixed rain and snowmelt signatures. To further achieve confidence in the results, algorithm outputs 141 

are analyzed in the context of California hydrology and tested for the extent that results align with 142 

expectations for regional hydrologic regimes.   143 

2. Methods 144 

The study design describes development, calibration, and performance assessment of the algorithm 145 

for detecting the timing of functional flow transitions from daily streamflow time series, with algorithm 146 

steps summarized in Figure 4.  147 

 148 

2.1. Study Region 149 

California has a Mediterranean climate with pronounced wet and dry seasons, as well as high 150 

interannual variability and spatial heterogeneity (Dettinger et al. 2011; Liu et al. 2018). Much of this 151 
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variability stems from California’s wide latitudinal extent (800 km) and physiographic diversity, with 152 

multiple mountain ranges and valleys of different sizes, shapes, and relief (Abatzoglou et al. 2009; 153 

LaDochy et al. 2007). California rainfall is characterized by the capability of a limited number of high 154 

intensity storm events to contribute to the majority of annual precipitation; Dettinger et al. (2011) 155 

found that 20-50% of California’s long-term rainfall average derives from these high precipitation 156 

storm events. California’s rivers and streams reflect the state’s climatic and physiographic diversity, 157 

ranging from small, intermittent streams in the southwest deserts to larger snowmelt-fed rivers 158 

draining the western slopes of the Sierra Nevada mountain range (Lane et al. 2018; Mount 1995).  159 

 160 

For this study, nine natural hydrologic classes previously identified for California by Lane et al. (2018) 161 

were aggregated into three dominant stream types recognized throughout the state (Mount 1995): 162 

snowmelt-, rainfall-, and mixed snowmelt and rain-sourced streams (Fig. 2). Snowmelt-sourced flow 163 

regimes are largely controlled by the timing and rate of snowmelt, which are driven by seasonal 164 

patterns of precipitation and temperature. Rain-sourced flow regimes are controlled by the intensity of 165 

winter rainfall and characteristics of individual storm events. Mixed-source streams experience both 166 

rain-driven flows in the winter and a snowmelt pulse in the spring, or they occur in large drainages 167 

that receive both snowmelt and rainfall contributions from upstream. 168 
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  169 

Fig. 2. The three dominant stream types in California based on aggregated natural hydrologic classes 170 

developed by Lane et al. (2018): snowmelt (yellow), mixed snow and rain (green), and rain (blue). 171 

Reference streamflow gages used in this study are shown as circles, and the number of total water 172 

years of data in each stream type are shown.  173 

2.2. Data 174 

Streamflow data used for this analysis come from 223 gage stations with unimpaired or naturalized 175 

daily streamflow records in California (refer to Kennard et al. 2010 for definitions of unimpaired and 176 

naturalized streamflow) (Fig. 2). Unimpaired gage data was sourced from the dataset compiled by 177 
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Zimmerman et al. (2017), who followed a 3-step protocol to obtain unimpaired daily streamflow. Their 178 

process designated gage stations as unimpaired based on: (1) designation as a “least disturbed” site 179 

from a U.S. Geological Survey database of watershed attributes (Falcone et al. 2010), (2) status of 180 

unimpairment based on annual gage station reports and appearance of natural conditions from 181 

satellite imagery, and (3) historical flow records that pre-date anthropogenic disturbance such as 182 

dams and urbanization. Seven gages with simulated unimpaired (i.e., naturalized) daily streamflow 183 

data were also added to the dataset to cover the Central Valley region of California (CDWR 2007), 184 

which was otherwise poorly represented by unimpaired gage stations. A final screening of the annual 185 

hydrographs of the resulting dataset was performed, and several gages were removed from the 186 

analysis that had flow patterns appearing irregular, impaired, or too low to exhibit seasonal patterns. 187 

The resulting dataset of 223 reference gages includes periods of record as early as 1891 and as recent 188 

as 2015, with an average period of record of 34 years and a range of 6 to 65 years.  189 

 190 

2.3. Seasonal Flow Detection Algorithm Development 191 

The following sections provide the theory and rationale for the Seasonal Flow Detection Algorithm 192 

(SFDA), explain the signal processing methods applied, and describe individual calculation steps. 193 

Additional description of signal processing methods is described in the Supplemental Materials.  194 

2.3.1. Data Smoothing 195 

Data smoothing is a type of filtering in which low-frequency components are retained while high-196 

frequency components are attenuated, enabling detection of features of interest at different 197 

frequencies or time-scales (Press and Teukolsky 1990). Common finite-difference smoothing 198 

techniques include simple running averages, weighted moving averages, and exponential filters 199 

(Janert 2010). In this study, a Gaussian weighted moving average filter was used to generate a 200 

smoothed time series using the function gaussian_filter1d from the SciPy Image Processing package 201 

(Verveer 2003) in Python. This smoothing method was selected for its ability to retain local maxima in 202 
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the output function, while avoiding abrupt distortions in the filtered data. The Gaussian filter sets the 203 

weighting factors of the smoothing window wj according to a Gaussian normal distribution  204 

 205 

𝑓(𝑥, 𝜎) 	= 	
1

√2𝜋𝜎-
	𝑒𝑥𝑝 0−

1
2 2	

𝑥
𝜎	3

-
4 206 

     [1] 207 

 208 

such that any new streamflow observation that enters the smoothing window is only gradually added 209 

to the moving average and then gradually removed. The standard deviation of the Gaussian function 210 

(σ) dictates the width of the distribution and consequently the degree of smoothing applied. In this 211 

study, low and high levels of streamflow data smoothing were associated with σ<5 and σ>8, 212 

respectively. For example, a daily streamflow time series smoothed with a high standard deviation 213 

Gaussian filter (σ=12, Fig. 3) will dampen daily to weekly hydrologic variability while preserving major 214 

seasonal patterns. Alternatively, a low standard deviation Gaussian filter (σ=4, Fig. 3) will preserve 215 

storm events occurring on weekly scales. High levels of smoothing are often applied first in the 216 

algorithm to identify coarse resolution temporal patterns such as the distinction between the annual 217 

wet and dry season, while removing the signal noise caused by individual storm events. Increasingly 218 

lower levels of smoothing are then applied to identify hydrologic features on finer temporal scales.  219 

 220 
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  221 

Fig. 3. Daily streamflow time series (black) plotted for one water year (Oct. 1–Sept. 30) with two 222 

levels of filters using Gaussian weighted moving averages with different σ parameter values. 223 

 224 

2.3.2 Splines 225 

Splines are functions constructed from segments of polynomials between each time series observation 226 

that are constrained to be smooth at the junctions (Letcher et al. 2001). Splines, which are used in 227 

the SFDA for derivative estimation of smoothed streamflow, have been shown to generate nearly 228 

optimal derivative estimates of noisy data such as streamflow time series due to low interpolation 229 

error (Craven and Wahba 1978; Ragozin 1983; Thomas et al. 2015). The SFDA employs a cubic spline 230 

function (three degrees of freedom) for derivative estimates, which is generally considered an optimal 231 

interpolation function for large time series (Carter and Signorino, 2010; Kimball 1976; Wahba, 1978). 232 

For further explanation on spline fitting, refer to Hastie and Tibshirani (1990). In this study, derivative 233 

estimation using a cubic spline was performed on smoothed and windowed streamflow time series 234 

using the one-dimensional univariate spline fitting function available from the SciPy library in Python 235 

(Jones et al. 2001). 236 



 

  
 

11 

2.4. Seasonal Flow Detection Algorithm (SFDA) General Steps 237 

The SFDA consists of six general steps used to detect seasonal flow transitions, although some 238 

applications may require either a subset of these steps or multiple iterations (Fig. 4). Steps are 239 

applied to each water year in a dataset, which in California is defined as October 1 to September 30. 240 

Step 1 (Fig. 4a): A high standard deviation Gaussian filter (G1) is applied to the observed daily 241 

streamflow time series to detect dominant peaks, valleys, or trends in the annual hydrograph. 242 

Depending on the level of smoothing, different frequency patterns (e.g., seasonal, sub-seasonal) are 243 

attenuated or left intact. Step 2 (Fig. 4b): A hydrologic feature of interest is identified from G1, such 244 

as annual peak flow. Step 3 (Fig. 4b): A localized search window is set around the feature of interest 245 

to constrain subsequent analysis to a hydrologically relevant period (e.g., 30 days before and after the 246 

feature of interest). Step 4 (Fig. 4c): Within the search window, a low standard deviation Gaussian 247 

filter (G2) is applied to the observed daily time series to extract high-resolution hydrologic patterns 248 

(e.g., individual storm events). Step 5 (Fig. 4d): A spline curve is fitted to smoothed data G2, and the 249 

derivative is taken to identify the slope of the hydrograph (S1’). Step 6 (Fig. 4d): A feature of interest 250 

is characterized in one of two ways: i) directly from G2 using relevant flow characteristics (i.e. 251 

magnitude), or ii) using the derivative of the spline curve (S1’) to detect peaks or valleys of interest 252 

based on slope or sign change (triangles represent peak features of interest, and the black diamond is 253 

the final selected feature). 254 

 255 
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 256 

 257 

Fig. 4.Six general steps of the SFDA use data smoothing, windowing, and feature detection to identify 258 

seasonal flow transitions from daily streamflow data.  259 

 260 

The SFDA steps are iterative and can be repeated multiple times to consistently and accurately 261 

identify flow transitions across water years and stream types. For example, the calculation of spring 262 

recession requires three iterations of smoothing and feature detection, while the calculation for dry 263 

season start timing only requires one iteration. The parameter values (e.g., smoothing parameter σ, 264 

window size, or magnitude thresholds) can be adjusted to suit the needs of particular flow regimes or 265 

hydrologic features of interest. For example, in flashy rain-driven streams the start of the dry season 266 

is generally indicated by the last significant storm event of the water year, which can be found using a 267 

low standard deviation Gaussian filter that closely fits daily streamflow data. Meanwhile, the start of 268 
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the dry season in a snowmelt-driven stream may be better identified by the general trend of flow 269 

reduction representing catchment drainage, which is best represented with a high standard deviation 270 

Gaussian filter to capture broader trends. 271 

 272 

To contextualize the parameterization process, the algorithm for the dry season start timing may be 273 

considered. The dry season start timing is identified in the receding limb of the annual hydrograph 274 

through a combination of relative magnitude and slope, which are determined by parameterization. 275 

The start timing will be identified later in the water year, for example, if the relative magnitude 276 

threshold is reduced (requiring lower magnitude) or if the slope threshold is reduced (requiring a 277 

flatter slope), essentially creating more stringent hydrologic requirements. Further, the degree of 278 

smoothing applied to raw daily streamflow dampens fluctuations in flow and can allow a stabilized 279 

slope to be detected earlier in the water year as the level of smoothing is increased. The combinations 280 

of parameters for each algorithm were determined by expert opinion of the co-authors to best achieve 281 

timing of the functional flows illustrated conceptually in Figure 1 across a diversity of hydrologic 282 

inputs, and this parameterization is available as default values in the SFDA code.  283 

 284 

2.5. Application of the SFDA to Functional Flows in California 285 

Four distinct applications of the SFDA were used to calculate the timing of functional flow component 286 

transitions based on reference-condition California streamflow gages (Fig. 2). In these applications, 287 

the SFDA steps were repeated up to three times to accurately identify functional flow transitions 288 

across the variety of stream types found in California. The parameter values (e.g., smoothing 289 

parameter σ or window size) were determined heuristically by the coauthors for each functional flow 290 

component to achieve timing results aligning with the conceptual timing of functional flow transitions 291 

illustrated in Figure 1 and described in Yarnell et al. (2020). In the calibration process, parameters for 292 

each functional flow identification algorithm were empirically and incrementally adjusted to achieve 293 

hydrologically meaningful results; for example, the parameters for spring recession start timing 294 

(smoothing parameter σ, window sizes, and magnitude thresholds) were adjusted so that the timing 295 

would occur after wet season high flows, but before flows had receded to baseflow conditions. 296 
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Supplemental Materials and associated online resources provide more information about the 297 

calculation of each functional flow timing metric, how to download the SFDA code, and how to modify 298 

algorithm parameters to achieve desired results. To demonstrate SFDA application to a specific 299 

functional flow component, the calculation of wet season start timing is described in Section 2.5.1.  300 

 301 

The timing metrics from the SFDA can be used to calculate additional functional flow metrics 302 

describing the magnitude, duration, frequency, and rate of change of flow within each functional flow 303 

component (e.g., baseflow magnitude or duration of the dry season) (Yarnell et al. 2020). The full 304 

suite of SFDA-based functional flow metrics can be visualized and downloaded at eFlows.ucdavis.edu, 305 

a website developed to view and interact with California's natural hydrology.  306 

 307 

2.5.1. Functional Flow Calculation for Wet Season Start Timing 308 

Wet season start timing delineates the portion of the water year during which streams receive the 309 

greatest inputs from storm runoff or snowmelt, and flows are elevated above dry season baseflow 310 

levels (Yarnell et al. 2020). The calculation for wet season start timing is presented as an example of 311 

the SFDA application to California functional flows. This calculation uses one iteration of the SFDA 312 

steps (Fig. 5). Within each water year, a high standard deviation Gaussian filter (G1, σ=10) is applied 313 

(Fig. 5, Step 1) to detect the water year’s global peak (P1) and preceding global valley (V1) (Fig. 5, 314 

Step 2). A relative magnitude threshold M1 is then set based on the magnitude of P1 and V1 as an 315 

upper limit (M1=𝛾*(P1-V1), where 𝛾=0.2), to ensure that the wet season start timing is not set after 316 

flows have already increased during the water year (Fig. 5, Step 3). A spline curve is fit to G1 so that 317 

its derivative can be used as a hydrologic requirement in the final feature detection step. Finally, 318 

searching backwards in time from P1, the date that discharge first falls below M1 and below a rate of 319 

change equaling (𝛿*P1, where 𝛿=0.002) is selected as the wet season start timing (Fig. 5, Step 4). 320 

The values for 𝛾 and 𝛿 were adjusted for California reference streamflow based on the co-authors’ 321 

expert opinions to achieve identification of the functional flows described conceptually in Figure 1 and 322 

Yarnell et al. (2020). 323 



 

  
 

15 

 324 

Fig. 5. SFDA steps to calculate the wet season start timing metric using data smoothing and feature 325 

detection based on magnitude and rate of change requirements. 326 

2.6. Performance Assessment 327 

The calibrated SFDA was evaluated based on its ability to accurately determine the timing of functional 328 

flow transitions across all years in the California unimpaired streamflow dataset. The analyzed results 329 

consist of four flow timing metrics calculated annually for each gage (6–65 years per gage). 330 

Performance assessment included: 1) a comparison of results across stream types, 2) visual 331 

inspection of results, and 3) calculation of assessment indices to quantify issues in algorithm 332 

performance. 333 

 334 

2.6.1. Comparison of Functional Flow Timing Results across Stream Types 335 

Results were grouped by stream type (rain-, snowmelt-, or mixed rain and snowmelt-sourced) and 336 

visualized with violin plots, which use a rotated kernel density plot to depict the distribution of results. 337 

Distinct letters above the violin plots denote groups with statistically distinct mean values based on 338 

Tukey’s Honestly Significant Difference statistical test with a confidence level of 95% (Abdi and 339 

Williams 2010). Groups with no statistical difference share the same letter above the violin plot. 340 
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Results were interpreted according to the co-authors’ expert knowledge of California streamflow 341 

hydrology and supported where possible with relevant region-specific literature.  342 

 343 

2.6.2. Visual Performance Assessment 344 

Visual inspection of functional flow timing results was performed as a preliminary step to inform 345 

quantitative inspection (Section 2.6.3). The four annual flow timing metrics were reviewed for each 346 

water year in the dataset (n=7475 years), yielding 29,900 visual inspections. Accuracy was visually 347 

assessed based on the authors’ knowledge of California seasonal flow components and when they 348 

were expected to occur across a range of water year types. Results that appeared incorrect were 349 

tabulated, grouped according to functional flow component and stream type, and reviewed by multiple 350 

experts in California hydrology from the co-author team to ensure consistency. After performing the 351 

29,900 visual inspections of the four timing metrics, issues were characterized based on the bias in 352 

timing (e.g., early or late timing) and the stream type in which it occurred.  353 

 354 

2.6.3. Quantitative Analysis with Assessment Indices  355 

The purpose of this analysis was to quantify issues in algorithm performance observed during visual 356 

assessment. The issues characterized during visual assessment were quantified using programmed 357 

rules defined to identify occurrence of each issue across the dataset. For example, one rule identified 358 

years in rain-sourced streams in which dry season start timing was set after August 1. This was based 359 

on repeated observation that flow magnitude and slope generally decrease to baseflow levels in this 360 

stream type before August 1, and dry season start timing set after August 1 was usually inaccurate. 361 

The developed rules were quantified across relevant stream types and resulting values were termed 362 

assessment indices. Many of the assessment indices attempt to quantify cases in which functional flow 363 

timing was either earlier or later than expected for a given water year, and these issues with timing 364 

were often stream type-specific. For example, seasonal timing metrics tend to occur later in the water 365 

year for snowmelt-sourced streams than rain-sourced streams, so a dry season timing metric of March 366 

1 could be considered anomalously early in snowmelt streams but normal in rain streams. Early or late 367 

occurrence was defined either through an empirical, evidence-based cut-off point (such as Aug. 1) or 368 

if possible through a relative hydrologic relationship, such as the number of high-flow events that 369 

occur before or after a particular timing metric is set. Other assessment indices quantify water year 370 
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features that make characterization with the SFDA difficult, such as dry water years in which only one 371 

or two peak flow events occur. Table 1 lists performance assessment indices used to quantify issues in 372 

algorithm timing calculations, based on final results from the SFDA.  373 

3. Results and Discussion 374 

 375 

The SFDA was found to consistently identify functional flow components across a wide range of 376 

hydrologic input data, enabling quantitative differentiation across stream types based on the timing of 377 

seasonal functional flows. Example SFDA timing results are presented in Figure 6 for individual water 378 

years spanning a range of stream types (rain-, mixed-, and snowmelt-sourced streams) and water 379 

year types (dry, moderate, and wet years) across a variety of watersheds, illustrating the ability of the 380 

SFDA to capture the timing of functional flow transitions in California across a diversity of hydrologic 381 

regimes.  382 

 383 
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 384 

Fig. 6. Select SFDA results for the timing of functional flow transitions across three stream types (rain, 385 

mixed rain and snow, and snowmelt) and three water year types in California (dry, moderate, and 386 

wet). Individual hydrographs are from USGS gages 11529000 (rain), 11413100 (mixed rain and 387 

snow), and 11266500 (snowmelt).  388 

3.1. Comparison of Results across Stream Types  389 

3.1.1. Fall Pulse Flow Timing 390 

The timing of the fall pulse flow marks the first peak flow of the water year when magnitude surpasses 391 

baseflow in a distinct pulse. Unlike the other functional flow components, the fall pulse flow is 392 

constrained to only occur during a subset time of the water year (Oct. 1-Dec. 15) when hydrologic 393 

requirements for relative magnitude and duration are met, and it does not necessarily occur in each 394 

water year. A fall pulse flow was identified in 60-65% of water years across all stream types. Although 395 

there were significant differences in event timing (p<0.05) between snowmelt streams and other 396 
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stream types, wide overlap exists across all stream types (Fig. 7A). This is due in part to large-scale 397 

temperature and precipitation patterns that affect California streamflow. Early in the water year (Oct.-398 

Nov.), temperatures across the state including the Sierra Nevada mountains are often above freezing, 399 

causing precipitation to fall as rain or rapidly melting snow (Lundquist et al. 2008; Serreze et al. 400 

1999). Additionally, atmospheric river events can cause correlated streamflow patterns across much of 401 

the state (Cayan and Peterson 1989), which are most pronounced when all precipitation is falling as 402 

rain. Therefore, a high degree of similarity is expected in the timing of fall pulse flows across all 403 

stream types. Further reason for the limited distinction among stream classes stems from the 404 

algorithm itself, which detects events over a narrow search window of 75 days (Oct.1-Dec. 15) 405 

considered ecologically significant for California streams (Yarnell et al. 2015). The upper and lower 406 

bounds of the violin plots span nearly the entire available time window of 75 days (Fig. 7A), indicating 407 

that fall pulse flow varies widely across all stream types. These results broadly align with Ahearn et al. 408 

(2014), who state that the season of flushing flows in California typically begins in November. 409 

 410 

 411 
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Fig. 7. Functional flow timing distributions across all stream types of California unimpaired streamflow. 412 

Letters above violin plots indicate statistical significance. The y-axis spans the California water year 413 

(Oct.-Sept. 31) for all components except the fall pulse flow, which is constrained from October 1-414 

December 15.  415 

 416 

3.1.2. Wet Season Start Timing 417 

Wet season start timing is the date that the water year begins to experience consistently elevated 418 

flows from either rainfall or snowmelt (Yarnell et al. 2020). The differences in these values were 419 

statistically significant (p<0.05) across the three stream types (Fig. 7B). The timing occurred three to 420 

four months later in snowmelt-sourced streams (average Mar. 4) than rain-sourced streams (average 421 

Dec. 12), and timing from mixed-source streams occurred across a wide range of values whose mean 422 

(Dec. 30) closely resembles rain-sourced streams. These differences were expected due to differing 423 

geographic and climatic drivers of wet season flow across California. In rain-sourced streams, the 424 

timing of wet season flow closely reflects patterns of winter precipitation, which occurs primarily 425 

during the winter months (Dec.-Feb.), although these peak flows also experience high interannual 426 

variability in timing (Cayan and Peterson 1989; Dettinger 2011). In high elevation snowmelt-sourced 427 

streams, peak flows are initiated by the snowmelt pulse as air temperatures warm enough to melt 428 

snowpack in the spring. In mixed-source streams, wet season start timing may be cued by either 429 

winter storms or a snowmelt pulse, resulting in a wide range of possible values driven either by 430 

precipitation timing or temperature-driven snowmelt (Fig. 8). The proportion of streamflow driven by 431 

rain versus snow is an important consideration in mid- and high-elevation basins, as runoff is 432 

expected to shift towards more rain-driven flow with warming climate in the western United States 433 
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(Hamlet et al. 2005; Stewart et al. 2015; Sultana and Choi 2018)  434 

 435 

Fig. 8. Hydrographs of two different water years from a mixed-source stream (USGS gage 11414000) 436 

show varying contributions of snowmelt and winter rain storms, resulting in a wide range of results for 437 

spring recession start timing and wet season start timing.  438 

 439 

3.1.3. Spring Recession Start Timing 440 

The spring recession represents the seasonal transition from wet season high flows to dry season low 441 

flows. The spring recession start timing is statistically distinct (p<0.05) across the three California 442 

stream types, with timing occurring progressively later in the water year from rain-sourced to 443 

snowmelt-sourced streams (Fig. 7C). This distinction in timing is expected due to climatic influences 444 

on hydrology that shift as streams progress from lower to higher elevations and snowpack provides 445 

increasing amounts of storage that delay streamflow response to precipitation (Aguado et al. 1992). 446 

In California’s highest elevations (above 2,300 meters), the spring recession is cued by a distinct 447 

temperature-driven snowmelt pulse. As the snowmelt influence diminishes and warming occurs earlier 448 

in lower elevation mixed-source streams (Fig. 2), the snowmelt pulse may arrive earlier or may not 449 

occur at all in dry years with very little snowpack relative to rainfall. In rain-sourced streams the 450 

spring recession is expected to occur after the last rain storm of the wet season, which tends to occur 451 

several months earlier in the year than the snowmelt pulse on average. The distribution of spring 452 

recession start timings in snowmelt-sourced streams is relatively narrow, with the majority of start 453 
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dates occurring between May 23 and July 6 (average June 6), indicating predictable recession timing 454 

in snowmelt streams regardless of water year type (Yarnell et al. 2010).  455 

 456 

The most variability in spring recession start timing occurs in mixed-source streams, which due to 457 

their occurrence at mid-elevation regions are highly sensitive to changes in temperature and 458 

snowpack (Lundquist et al. 2004; Stewart 2008). Figure 8 demonstrates how a greater snowmelt 459 

pulse is associated with later spring recession timing, occurring 31 days later in water year 1952 than 460 

in 1970. This finding aligns with other research on streamflow in the western US, that has indicated 461 

both temperature and annual flow volume are significant drivers of spring snowmelt runoff timing 462 

(Aguado et al. 1992, Kormos et al. 2016). Adding to this variability, snowmelt-receiving streams in 463 

mid-elevation regions of California have been subject to significant changes in the timing of snowmelt 464 

recession peaks due to climate warming (Stewart 2008). Hamlet et al. (2005) for example estimated 465 

peak accumulation of snowmelt runoff in mid-elevation areas of California as occurring 15-45 days 466 

earlier throughout the last century, which adds additional variation to the spring recession start timing 467 

results in mixed snowmelt and rain regimes. Although rain-sourced streams also exhibit high 468 

variability in spring recession timing, the average spring recession start timing across rain-sourced 469 

streams (April 7) broadly aligns with the generally accepted end of the rainy season for California (Liu 470 

et al. 2018).  471 

  472 

3.1.4. Dry Season Baseflow Start Timing 473 

The start timing of the dry season marks the beginning of the low flow, low variability portion of the 474 

water year, in which the rate of recession flows has stabilized and magnitudes reach baseflow level. 475 

Similar to spring recession start timing, dry season start timing is statistically distinct among the three 476 

stream types (p<0.05) and occurs gradually later on average from rain-sourced (June 6), to mixed-477 

source (July 16), to snowmelt-sourced streams (August 7) (Fig. 7D). The timing distribution ranges 478 

more than 100 days in rain-sourced streams, which is consistent with the high inter-annual variability 479 

of precipitation magnitude and timing (and consequently streamflow) exhibited in California (Dettinger 480 

et al. 2011).  481 

 482 
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Despite high variability across rain-sourced streams, the average dry season start timing in these 483 

streams is surprisingly consistent from small to large streams. For instance, the average dry season 484 

start timing is June 8 in larger north coast streams (average annual flow 23 cms), and is similar in 485 

flashy ephemeral streams (average annual flow 0.5 cms), with an average start timing of May 27 486 

(from Lane et al. 2017). However, interannual variability in dry season start timing within a single 487 

stream can be high, suggesting that central tendencies do not represent dry season timing conditions 488 

well in rain-sourced streams.     489 

3.2. Performance Assessment Indices 490 

Assessment indices were created to quantify the accuracy of the SFDA for identifying the timing of 491 

functional flow transitions in California reference streamflow. Assessment indices are presented in 492 

Table 1, and the following section highlights key issues and limitations for each functional flow. The 493 

frequency of most identified issues was less than 10%, except for Snow-early-wet and Mixed-early-494 

spring, which are explained in Table 1 and below.  495 

 496 

Table 1. Assessment indices for SFDA timing results.   497 

Stream 

type 

Issue Assessment index 

calculation 

Index name Frequency 

All types Fall pulse flow timing can occur on the very first 

day of the water year (Oct. 1), when it is difficult 

to determine from an annual hydrograph if the 

set date represents an actual peak or if it is 

capturing a recessing flow carried over from the 

previous water year. 

Percentage of years in 

which the fall pulse timing 

is on day one of the water 

year (Oct. 1). 

Fall-day1 1% 

All types Occasionally the requirements for wet season 

start timing are not met so the metrics are not 

calculated. 

Percentage of years in 

which spring recession or 

dry season start timing are 

calculated, but wet season 

start timing is not 

Wet-season 2% 
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calculated. 

All types A lag between spring recession and dry season 

start timing of more than five months indicates 

an anomaly within the water year, such as early 

spring recession or late dry season start timing, 

or a year in which the component timings were 

based off of a very limited number of storms. 

Percentage of years in 

which the number of days 

between spring recession 

and dry season start timing 

is greater than 150 days 

(five months). 

Spring-dry-

gap 

5% 

Snowmelt Spring recession start timing can be calculated 

late into the recession period such that it occurs 

at the end of the snowmelt pulse instead of the 

beginning. Dry season start timing 

consequently occurs very soon after the spring 

recession timing. 

Percentage of years in 

which spring recession 

start timing and dry season 

start timing occur within 21 

days of each other. 

Snow-late- 

spring 

1% 

Snowmelt Wet season start timing in snowmelt streams 

can be triggered by large rainstorm flows early 

in the climatic wet season (Nov.-Jan.), and 

other years it is triggered by the snowmelt 

pulse (Apr.-May). This results in a wide range 

of start timing in the snowmelt stream type, 

triggered by differing hydrologic cues. 

Identification of timing before February 1 

approximates how often wet season start timing 

is triggered by rainstorms instead of snowmelt.   

Percentage of years in 

which wet season start 

timing occurs before 

February 1. 

Snow-early 

-wet 

  

  

25% 

Mixed-

source and 

Rain 

In especially dry years, the annual hydrograph 

can be defined by a single large, brief storm 

event. This may cause wet season and spring 

recession start timing to be set based on a 

single storm such that they occur in close 

proximity. 

Percentage of years in 

which wet season and 

spring recession start 

timing occur within 30 days 

of each other. 

Mixed-

spring-

wet/Rain-

spring-wet 

Mixed-

spring-wet: 

4%/ Rain-

spring-wet: 

4% 
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Mixed-

source and 

Rain 

Spring recession start timing can occur before 

the end of wet season occurrence. This most 

commonly occurs in hydrographs without a 

strong snowmelt presence.  

Percentage of years in 

which any high flows (>5th 

percentile) occur after that 

year’s spring recession 

start date. 

Mixed-early-

spring/Rain-

early-spring 

  

  

Mixed-

early-

spring: 

21%/ Rain-

early-

spring: 5% 

Mixed-

source 

Dry season start timing can occur immediately 

after spring recession start timing, with a small 

gap of time between. This often occurs when 

the spring recession is identified too late into 

the period of receding high flows.   

Percentage of years in 

which spring recession and 

dry season start timing 

occur within 21 days of 

each other. 

Mixed-late-

spring 

  

1% 

Rain Wet season start timing can occur late after the 

first high flows of the wet season. 

Percentage of years in 

which any high flows (>5th 

percentile) occur before 

that year’s wet season 

start date. 

Rain-late-

wet 

8% 

Rain Dry season start timing can occur late into the 

dry season in rain-sourced streams, well after 

flows have already receded. This is usually the 

case when dry season start timing is set in 

August or later, based on repeated visual 

inspection. 

Percentage of years in 

which dry season start 

timing occurs later than 

August 1. 

Rain-late-

dry 

  

10% 

 498 

The methods presented here to identify hydrologic features and determine error differ from previous 499 

hydrologic studies, which can often take advantage of validated training sets to determine accuracy 500 

(Cannas et al. 2006; Letcher et al. 2001; Smith and Schwartz 2017). The heuristic methods used in 501 

this research are similar to other approaches that require some subjectivity for parameterization of 502 

peak detection (Palshikar 2009), and qualitative visual assessment methods are similar to approaches 503 

used to validate climate patterns in climate modeling studies that pair qualitative and quantitative 504 

model assessment (Gyalistras et al. 1994; Paul and Hsu 2012). Performance assessment based on 505 

validation of known hydrologic conditions employed in this study is similar to the approach of Déry et 506 
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al. (2009), who assessed a new method of spring recession identification across different river types in 507 

their study region. The proposed methods, although subjective in the choice of parametrization, 508 

present a consistent and repeatable way to identify functional flow components, advancing previous 509 

methods of quantifying seasonal streamflow patterns.  510 

 511 

3.2.1. Issues in SFDA performance  512 

Figure 9 presents common issues in the SFDA for each functional flow component, which were often 513 

attributed to uncommon hydrologic patterns or effects from smoothing filters that occasionally have 514 

the undesired effect of over-dampening storm peaks while detecting broad hydrologic trends. In some 515 

water years, the first day of the water year (Oct.1) was identified as the date of the fall pulse flow, 516 

which presents ambiguity as to whether the first day of the water year is an actual peak event or is 517 

instead part of a continual decline from a peak in the previous water year (Fig. 9A). This situation 518 

occurs most often in naturalized gage data, with a 3.5% occurrence rate across all naturalized water 519 

years and an average occurrence rate of 1% across the entire dataset (Table 1, index WSI-day1).  520 

 521 
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 522 

Fig. 9. Examples in which timing metrics are affected by uncommon hydrologic patterns (A and B) or 523 

are identified earlier or later than expected given expert understanding (C and D). Panels C and D 524 

illustrate the algorithm results compared to proposed improvements based on the co-authors’ 525 

understanding of California hydrology. Hydrographs from USGS gages 11213500 (A), 11046300 (B), 526 

11033000 (C), and 11120520 (D).  527 

 528 

Both mixed- and rain-sourced streams experienced some water years in which a single large high flow 529 

event dominated the annual hydrograph such that start timings of wet season and spring recession 530 

were based on the same peak flow (Fig. 9B). This occurred in 4% of mixed-source streams and 4% of 531 

rain-sourced streams (Table 1, indices Mixed-spring-wet/Rain-spring-wet) and could result in 532 

anomalous functional flow metrics based on these rare hydrologic conditions. In mixed-source 533 

streams, early identification of spring recession start timing was found with a frequency of 21% (Table 534 

1, index Mixed-early-spring), sometimes due to the effect of over-dampening rainstorm peaks with 535 

smoothing filters when attempting to detect broad hydrologic trends (Fig. 9C). Conversely, spring 536 

recession start timing occurred late in 10% of snowmelt stream water years, when the algorithm was 537 
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triggered by small peaks along the recession limb instead of the main snowmelt pulse (Table 1, index 538 

Snow-early-spring). The algorithm for dry season start timing assesses the change in magnitude and 539 

slope along the recession limb, so dry water years with very little change in these features are more 540 

likely to have issues with component detection. This was often the case when dry season start timing 541 

was identified late in the water year (Fig. 9D), which occurred in 10% of rain-sourced water years 542 

(Table 1, index Rain-late-dry). These issues are expected to improve when SFDA parameters are 543 

calibrated for smaller regions of streamflow data, instead of applying the same set of parameters 544 

across a wide array of input data, as was done in this statewide case study.   545 

4. Conclusions 546 

This study developed an objective signal processing algorithm to address the need for a robust 547 

method to characterize the timing of seasonal flow transitions from daily streamflow time series. The 548 

Seasonal Flow Detection Algorithm (SFDA) improved on existing methods that rely on fixed time steps 549 

through the novel application of established signal processing techniques to identify the timing of 550 

seasonal flow transitions. The application to California streams demonstrated the ability of this 551 

approach to identify the timing of functional flow components from unimpaired daily streamflow time 552 

series across a wide range of climatic and geographic settings and extreme seasonal and interannual 553 

hydrologic variability. Results highlight hydrologic distinctions among varying drivers of streamflow, 554 

such as progressively later timing of spring recession flow as streams shift from rainfall-sourced to 555 

snowmelt-sourced flow regimes. Limitations of the approach were determined through a combination 556 

of visual expert-based assessment and quantitative performance assessment. In general, the 557 

percentage error in timing calculations did not exceed 10% across relevant water years for any 558 

assessment index, with infrequent exceptions. In a parallel effort, functional flow metrics produced by 559 

the SFDA for California reference gages are being extrapolated to ungaged streams to inform 560 

statewide environmental flow recommendations. Likewise, the SFDA has potential to be applied to 561 

other regions or countries sharing highly seasonal climates similar to California, by adjusting algorithm 562 

parameters to suit local hydrology. For instance, the SFDA metrics could be applied to assess shifts in 563 

streamflow due to climate change, with particular focus on potential changes in timing of seasonal 564 
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flows. The proposed approach supports improved understanding of high-resolution spatial and 565 

temporal trends in hydrologic processes and climate conditions across complex landscapes and can 566 

inform environmental water management efforts. 567 
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