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Abstract: Alterations to flow regimes for water management objectives have degraded river 10 
ecosystems worldwide. These alterations are particularly profound in Mediterranean climate 11 
regions such as California with strong climatic variability and riverine species highly adapted to 12 
the resulting flooding and drought disturbances. However, defining environmental flow targets for 13 
Mediterranean rivers is complicated by extreme hydrologic variability and often intensive water 14 
management legacies. Improved understanding of the diversity of natural streamflow patterns and 15 
their spatial arrangement across Mediterranean regions is needed to support the future 16 
development of effective flow targets at appropriate scales for management applications with 17 
minimal resource and data requirements. Our study addresses this need through the development 18 
of a spatially explicit reach-scale hydrologic classification for California. Dominant hydrologic 19 
regimes and their physio-climatic controls are revealed using available unimpaired and naturalized 20 
streamflow time-series and generally available geospatial datasets. This methodology identifies 21 
eight natural flow classes representing distinct flow sources, hydrologic characteristics, and 22 
catchment controls over rainfall-runoff response. The study provides a broad-scale hydrologic 23 
framework upon which flow – ecology relationships could subsequently be established towards 24 
reach-scale environmental flows applications in a complex, highly altered Mediterranean region. 25 
 26 
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 28 

INTRODUCTION 29 

Alterations to natural flow regimes for human water management objectives have degraded 30 

river ecosystems worldwide. These alterations are particularly profound in Mediterranean regions 31 

such as California with strong climatic variability and aquatic and riparian species highly adapted 32 

to the resulting flooding and drought disturbances (Gasith and Resh 1999). The modification of 33 

reservoir operations to control the timing, magnitude, and duration of flow releases for 34 

environmental benefits (i.e., environmental flows) is an emerging approach for mitigating the 35 

negative ecological impacts of dams while preserving essential water management functions 36 



 

(Richter et al. 1996; Richter and Thomas 2007; Arthington 2012; Ai et al. 2013; Lane et al. 2014). 37 

However, defining effective environmental flows targets has proven very challenging (Konrad et 38 

al. 2012; Meitzen et al. 2013) due to natural complexity and heterogeneity as well as widespread 39 

human intervention (Benda and Dunne 1997; Egger et al. 2012; Wyrick et al. 2014). These 40 

challenges are often exaggerated in Mediterranean regions by extreme hydrologic variability and 41 

intensive water management legacies (Bejerano et al. 2010).   42 

Hydrologic classification is one strategy to improve our understanding of complex 43 

catchment function (Pardé 1933; Dooge 1986; Sauquet et al. 2000; Sivapalan 2005; Wagener et 44 

al. 2007) and to ascribe catchments to empirically-based functional groups (e.g., Rosgen 1994; 45 

Brandt 2000; Montgomery and Buffington 1997). By identifying and categorizing dominant 46 

catchment functions as revealed through a suite of hydrologic response characteristics (e.g., 47 

streamflow indices) and catchment attributes (e.g., climate, topography, geology), hydrologic 48 

classification allows for the regional transfer of hydrologic information. This ultimately improves 49 

the predictive power and process basis of flow — ecology relationships towards the future 50 

development of effective environmental flow targets with minimal data and resource requirements 51 

(e.g., Richter et al. 1996; Poff et al. 2010; Liermann et al. 2011; Olden et al. 2012). 52 

Hydrologic classification has established a central role in environmental flows science 53 

(Olden et al. 2012) to support the assessment of baseline conditions (e.g., Tavassoli et al. 2014; 54 

Hersh and Maidment 2010; Richter et al. 1996) and the development of flow — ecology 55 

relationships (Apse et al. 2008; Kennen et al. 2007; Carlisle et al. 2010). In the past decade, such 56 

regional classifications have been developed for New Zealand (Snelder et al. 2005), Turkey 57 

(Kahya et al. 2008), France (Snelder et al. 2009), Australia (Kennard et al. 2010), Canada (Monk 58 

et al. 2011), various basins in Spain (Baeza Sanz and García de Jalón 2005; Bejarano et al 2010; 59 

Belmar et al. 2011) and in the United States for Colorado (Sanborn and Bledsoe 2006), Michigan 60 

(Seelbach et al. 1997, Brenden et al. 2008), Texas (Hersh and Maidment 2010), New Jersey 61 

(Kennen et al. 2007), Pennsylvania (Apse et al. 2008), Missouri (Kennen et al. 2009), Washington 62 

(Liermann et al. 2011), and Oregon (Wigington et al. 2013).  63 

In spite of the marked value of hydrologic classification as an environmental water 64 

management tool and the evident need for such a tool in Mediterranean regions, relatively few 65 

hydrologic classifications have been developed for this climate setting. An evaluation by the 66 

authors indicated that, of 50 regional hydrologic classifications developed in the past 40 years 67 



 

[based on the subset of regional hydrologic classifications reviewed by Olden et al. (2012)], only 68 

10% fell within dominantly Mediterranean regions (Köppen climate classes Csa and Csb) (Köppen 69 

and Geiger 1930) (Turkey, Kahya et al. 2008; Spain, Baeza and García de Jalón 2005; Washington 70 

State, Liermann et al. 2011; Oregon State, Wigington et al. 2013). Furthermore, 71% of studies 71 

were based in fully humid regions while only 10% fell within seasonally dry climates [see 72 

supplemental materials]. While based on a subset of regional classifications, these findings 73 

emphasize the need for further classification of Mediterranean rivers and streams to inform the 74 

development of environmental flow targets given their disproportionate regulation and degradation 75 

and underrepresentation in the literature.  76 

 77 
Study objectives 78 

The goal of this study is to develop a hydrologic classification for the Mediterranean region 79 

of California by applying established hydrologic and ecological techniques at appropriate scales 80 

for environmental flows applications with minimal resource and data requirements. To the best of 81 

the authors’ knowledge, this study represents the first attempt at a statewide hydrologic 82 

classification for the State of California, supporting the future development of environmental flow 83 

targets for the region’s severely degraded river ecosystems at a time of increasing sociopolitical 84 

impetus to address these problems (Magilligan and Nislow 2005; Moyle et al. 2011; Hanak et al. 85 

2011). This study advances scientific understanding of the diversity and spatial distribution of 86 

dominant hydrologic regimes and catchment controls present in a large Mediterranean region. To 87 

achieve these goals this study aims to address four key questions: (1) What distinct dominant 88 

hydrologic regimes can be distinguished within the study region? (2) Do physical catchment 89 

attributes help to explain the distinguished hydrologic regimes? (3) How do the identified 90 

hydrologic regimes compare to those found in existing California-based and national or global 91 

hydrologic classifications? (4) What insights does the resulting hydrologic classification provide 92 

for environmental flows applications in California? 93 

 94 
STUDY REGION 95 

The study region comprises the State of California (425,000 km2), a highly heterogeneous 96 

region with respect to physical and climatic characteristics that contains both the highest (4,418 97 

m) and lowest (-86 m) points in the contiguous United States and extends from 32° to 42° latitude. 98 

California primarily exhibits a Mediterranean climate with cold, wet winters (Oct - Apr) and warm, 99 



 

dry summers (May - Sep). Within the state, climate is determined by the interactions between 100 

atmospheric circulation, ocean proximity, and topography (Leung et al. 2003). For example, 101 

ocean-derived moisture from the west causes the western slopes of the Sierra Nevada to be 102 

generally wetter than the eastern slopes, with winter precipitation at higher elevations falling as 103 

snow. High inter-annual variability associated with large-scale circulation patterns [e.g., El Niño 104 

Southern Oscillation (Cayan et al. 1999) and the Pacific Decadal Oscillation (Mantua and Hare 105 

2002)] adds additional complexity to regional rainfall-runoff patterns. California’s geologic setting 106 

is highly heterogeneous, ranging from the volcanic dominated Modoc Plateau to the thick 107 

sedimentary strata of the Coastal Range, and is often organized into eleven geomorphic provinces 108 

consisting of prominent tectonics, lithology, and topographic relief (CGS 2002). Soils composition 109 

also varies widely based on soil texture, depth, and rock fragment content. A statewide range of 110 

soil water storage capacity from 0 to 71 cm highlights this variability and is expected to influence 111 

the region’s hydrology (CSRL 2010). 112 

California’s legacy of intensive and widespread hydrologic alteration for mining, water 113 

supply, flood control, land use change, and hydropower has severely degraded the state’s river 114 

ecosystems (Healey et al. 2008; Hanak et al. 2011), emphasizing the need for a broad-scale 115 

hydrologic framework for environmental flows management. Less than 2% of California’s total 116 

streamflow remains unaltered (Mailligan and Nislow 2005), while over 80% of the native fish 117 

species are now imperiled or extinct (Moyle et al. 2011). Further, most of the state’s approximately 118 

1,400 jurisdictional dams and 10,000 smaller impoundments are currently operated with minimal 119 

consideration for their effects on river ecosystems (Viers 2011; Grantham et al. 2014). Releasing 120 

environmental flows has been shown to substantially improve environmental conditions below 121 

dams while preserving essential water management functions. For instance, adjusting the timing 122 

of flow releases to correspond with natural seasonal fish spawning and rearing cues in a California 123 

stream promoted the expansion and maintenance of native-dominated fish assemblages without 124 

reducing the annual volume of water delivered to downstream irrigators (Kiernan et al. 2012).  125 

 126 
DATA 127 

For this study we considered all gauge stations with >15 years of continuous daily 128 

unimpaired or naturalized streamflow records (see Kennard et al. 2010 for definition of unimpaired 129 

and naturalized). For the 20-year time period from 1968-1988, 75 unimpaired gauge stations were 130 



 

identified from the Hydro-Climate Data Network GAGESII database based on an index of 131 

cumulative upstream disturbance by anthropogenic stressors (Falcone et al. 2010). An unimpaired 132 

streamflow record refers to a time series that is minimally influenced by upstream disturbances of 133 

infrastructure, land use change, or water diversions. An additional 16 gauge stations for which 134 

simulated non-regulated (i.e., naturalized) streamflow time-series are available [20-year period 135 

(1989-2009)] were added to the analysis to increase both sample size and physiographic range of 136 

reference gauge stations (CDWR 2007). The resulting 91 reference gauge stations ranged in 137 

elevation from 7 to 2,286 m above sea level (a.s.l.) and in drainage area from 54 to 8,063 km2, 138 

covering a wide range of physical and climatic catchment characteristics (Fig. 1). It should be 139 

noted that no reference gauge stations were available for the southeastern desert part of California. 140 

Results of trend tests for climate non-stationarity (Kendall 1975) and autocorrelation (Durbin and 141 

Watson, 1950) in the streamflow records indicated minimal monotonic climate trends over the 142 

time periods considered in this analysis, supporting the use of selected streamflow records for the 143 

calculation of hydrologic indices and subsequent classification development [see supplementary 144 

materials]. 145 

 146 
Figure 1. Reference Gauge Stations Considered in Development of Hydrologic Classification. 147 

 148 



 

Geospatial data for 27 catchment attributes were considered in the hydrologic 149 

classification to derive physical explanations for the dominant hydrologic regimes. These 150 

attributes were also used to transfer the dominant hydrologic regimes from gauged reference 151 

catchments to ungauged catchments (Table 1). The 27 attributes represent three primary controls 152 

on hydrologic behavior: topography, geology, and climate (Wolock et al. 2004). Topographic 153 

attributes included upstream contributing area, elevation, drainage density, basin geometry, and 154 

numerous other terrain indices; geologic attributes included dominant geology, surficial geologic 155 

materials, underlying aquifers, and riparian soils composition; and climatic attributes consisted 156 

of measures of precipitation, temperature, and seasonality (Markham 1970). In an effort to 157 

capture flow regime seasonality, the months of January and August were chosen to represent the 158 

peak of the wet and dry seasons, respectively. July climatic attributes were considered in addition 159 

to August attributes to capture the expected difference in late spring recession rates across the 160 

state. All catchment attributes were calculated for each reference gauge station or reach based on 161 

its entire upstream watershed. Table 1 provides a complete list of catchment attributes 162 

considered, including their spatial resolution, data source, and method of derivation. 163 

 164 



 

Table 1. Catchment Attributes Considered in This Study as Potential Controls on Hydrologic Response. 165 

 166 

METHODOLOGY 167 

The hydrologic classification was developed in four steps: (1) statistical analysis of 168 

streamflow data, (2) cluster analysis of hydrologic indices to identify distinct dominant hydrologic 169 

regimes, (3) classification of dominant hydrologic regimes based on physical and climatic 170 

catchment attributes, and (4) prediction of natural flow classes for ungauged reaches (Fig. 2). Steps 171 

1 and 2 address the first study question, and steps 3 and 4 address the second question. The third 172 

and fourth study questions are considered in the subsequent discussion.  173 



 

 174 
Figure 2. Hydrologic Classification Methodology, Including Key Steps and Associated Goals. CART, classification and regression trees. 175 

 176 

Identification of dominant hydrologic regimes 177 

Statistical analysis of streamflow data. 178 

Using the publicly available Indicators of Hydrologic Alteration (IHA) software (Richter 179 

et al. 1996; Matthews and Richter 2007), ecologically-relevant hydrologic indices were calculated 180 

for the 75 unimpaired gauge stations for the 1968-1988 period and for the 16 naturalized gauge 181 

stations for the 1989-2009 period. A normalized subset of hydrologic indices meeting probabilistic 182 

independence was used for subsequent cluster analysis (Table 2). First, calculated indices were 183 

normalized with feature scaling to range from 0 to 1 to remove potential differences in index 184 

magnitudes leading to differential weighting in the cluster analysis. The coefficient of correlation 185 

was then used to identify an independent subset of indices (r < 0.8) with the objective of reducing 186 

the dimensionality of the dataset while retaining as much of the variation inherent in the original 187 

streamflow data as possible; hydrologic indices supported by the literature to be of particular 188 

ecological importance (e.g., mean annual flow and high flow duration) were excluded from this 189 

selection process and included in the analysis regardless of their correlation (Postel and Richter 190 



 

2003). Finally, a principal components analysis (PCA) based on correlations between hydrologic 191 

indices was used to evaluate the loadings of indices on the first four PCs in order to examine which 192 

variables explained the majority of variation between natural flow classes (Jolliffe 1986).  193 

 194 
Table 2. Hydrologic Indices Used in the Cluster Analysis to Distinguish Dominant Hydrologic Regimes across California Based on the 91 195 

 196 
Cluster analysis. 197 

To identify dominant hydrologic regimes (i.e., natural flow classes) among the 91 reference 198 

gauge stations, a non-hierarchical k-means cluster analysis was performed on the hydrologic 199 

indices (Hartigan and Wong 1979; Kaufman and Rousseeuw 1990) (Table 2, Fig. 2). K-means is 200 

known for its efficiency to handle large datasets, sensitivity to noise (Purviya et al. 2014), and 201 

repeated successful application in hydrologic classification studies (e.g., Poff and Ward 1989; 202 

Dettinger and Diaz 2000; Liermann et al. 2011). A hierarchical “Ward’s linkage” algorithm was 203 

first applied to evaluate the natural data partitioning (Johnson 1967) (Fig. 3) and k-means was then 204 

applied for k = 2 – 9 k-values. The optimal k was determined by the Davies-Bouldin internal 205 

clustering validation index (DBI) (Davies and Bouldin 1979). The stability of the identified natural 206 

flow classes was assessed with the cluster stability index (CSI) (Hennig 2007), calculated as the 207 

average proportion of gauges reassigned to their original clusters based on nonparametric 208 



 

bootstrapping with replacement (50 replications, leave out 10) (Hubert and Arabie 1985). CSI 209 

values <0.5 represent dissolved clusters whereas values >0.6 indicate true patterns (Hennig 2007). 210 

An additional cross-validation assessed the classification’s robustness to the addition of 211 

naturalized gauge stations based on the adjusted Rand index (Hubert and Arabie 1985; Santos and 212 

Embrechts 2009). 213 

 214 
Figure 3. Hierarchical Cluster Diagram Shows Commonalities among 91 Reference Gauge Stations Based on Their Hydrologic Indices, 215 

Corroborating the Identification of Seven Distinct Clusters (defined in text) as Distinguished by the Nonhierarchical k-Mean Cluster Analysis. 216 
SM, snowmelt; HSR, high-volume snowmelt and rain; LSR, low-volume snowmelt and rain; WS, winter storms; GW, groundwater; PGR, 217 

perennial groundwater and rain; FER, flashy ephemeral rain. 218 
 219 

Physical and climatic catchment controls on hydrologic regimes 220 

In order to identify physical and climatic controls on the flow regime of a catchment and 221 

to predict the flow regime (i.e., natural flow class) of ungauged reaches, we applied Classification 222 

and Regression Trees (CART), a recursive-partitioning algorithm that classifies the data space 223 

defined by the input variables (catchment attributes) based on the output variable (natural flow 224 

class) (Breiman et al. 1984) (Step 3, Fig. 2). The CART analysis was conducted using the statistical 225 

R package ‘rpart’ (Therneau et al. 2010). Input variables for the CART analysis consisted of the 226 

27 catchment attributes (see Table 1). The Gini impurity criterion was used to determine optimal 227 

variable splits (minimum parent node size: n=5; minimal terminal node size: n = 2) (De’ath and 228 

Fabricus, 2000), and optimal tree size was based on a ten-fold cross-validation (Therneau et al. 229 

2010). The fitted misclassification rate (Breiman et al. 1984) was used to assess how well the 230 

catchment attributes explain the spatial variability of natural flow classes across reference gauge 231 

stations. The random forest classifier out-of-bag error rate (Breiman 2001) provided a probabilistic 232 



 

measure of model accuracy that compared model predictions of natural flow class with randomized 233 

subsets of reference gauges withheld. 234 

 235 
Prediction of natural flow classes 236 

The classification model was then used to transfer the identified natural flow classes to 237 

over 100,000 National Hydrography Dataset [(NHD, 1:100,000 scale, Simley and Carswell 238 

(2009)] stream reaches in California based on their upstream catchment attributes (Step 4, Fig. 2). 239 

Prediction of natural flow classes was conducted for reaches with a Strahler order of two or higher 240 

derived from the NHD (average reach length 2 km); Strahler first-order reaches were excluded to 241 

improve processing time. All catchment attributes were calculated for each reach based on its 242 

entire upstream watershed using the Catchment Attribute Allocation and Accumulation Tool in 243 

ArcGIS (version 10.2, ESRI Inc.) (Horizon System Corporation 2008). 244 

 245 
RESULTS 246 

Eight natural flow classes were distinguished across California, representing statistically 247 

distinct and physically interpretable dominant hydrologic regimes and physical and climatic 248 

catchment controls. Both the hierarchical and k-means cluster analyses identified seven distinct 249 

hydrologic regimes as the most probable classification (DBI=1.45) (Fig. 1). However, further 250 

analysis of classification results indicated that one of the seven classes was better distinguished by 251 

splitting it into two sub-classes, resulting in eight final natural flow classes. This splitting process 252 

is described later in this section. 253 

 254 
Identification of dominant hydrologic regimes 255 

Both the hierarchical and k-means cluster analyses identified seven clusters as the most 256 

probable classification (DBI=1.45) (Fig. 1). Probability of cluster membership ranged from 60 to 257 

99%, with an average of 80%, suggesting strong support for the seven-tier classification. The 258 

bootstrapping test produced CSI values >0.5 for all seven clusters (mean=0.71), indicating a 259 

parsimonious clustering solution (Hennig 2007). An adjusted Rand index of 1 between cluster 260 

analysis results using only unimpaired gauge stations and using both unimpaired and naturalized 261 

gauge stations further corroborates the stability of the seven-tier clustering solution to the dataset 262 

augmentation. 263 



 

The standardized annual hydrographs (Fig. 4) and range of hydrologic indices of each natural 264 

flow class (Fig. 5) illustrate the clear differences in seasonal and annual streamflow patterns as 265 

well as streamflow timing, magnitude, duration, frequency, and rate-of-change characteristics 266 

(Table 2) exhibited by each flow regime. The annual hydrographs illustrate the median of the 267 

standardized average monthly streamflow volumes across all years and gauges within each flow 268 

class. Loadings of hydrologic indices on the first four PCs indicate that the components (and 269 

associated hydrologic indices) of the flow regime best capable of distinguishing between natural 270 

flow classes are (i) low flow characteristics (flood-free season, number of zero-flow days, and 271 

extreme low flow timing), (ii) high flow characteristics (date of maximum, high flow timing and 272 

frequency, large flood duration), (iii) seasonality (flood-free season, high and low flow timing, 273 

duration, and frequency), and (iv) predictability (flow predictability, constancy/predictability, base 274 

flow index, low and high flow duration) (Table 3).  275 

 276 
Figure 4. Standardized Log-Transformed (log(Q)) Annual Hydrographs of the Initial Seven Hydrologic Regimes Identified in the Cluster 277 

Analysis. The annual hydrographs illustrate the median of the standardized average monthly streamflow volumes across all years and gauges 278 
within each flow class. Classes are defined as follows: SM, snowmelt; HSR, high-volume snowmelt and rain; LSR, low-volume snowmelt and 279 

rain; WS, winter storms; GW, groundwater; PGR, perennial groundwater and rain; FER, flashy ephemeral rain. 280 



 

 281 
Figure 5. Box-and-Whisker Plots of Selected Hydrologic Indices Used in the Cluster Analysis to Separate the Initial Seven Hydrologic Regimes 282 
Based on Daily Streamflow Data from the 91 Reference Gauge Stations. Classes are defined as follows: SM, snowmelt; HSR, high volume 283 
snowmelt and rain; LSR, low-volume snowmelt and rain; WS, winter storms; GW, groundwater; PGR, perennial groundwater and rain; FER, 284 
flashy ephemeral rain. 285 
 286 
Table 3. Key Flow Components Distinguishing Natural Flow Classes with Expected Significance for Setting Environmental Flow Targets 287 
Including: (1) Low Flow Characteristics, (2) High Flow Characteristics, (3) Seasonality, and (4) Predictability. 288 

 289 
By qualitatively interpreting classification results, clusters (i.e., groups of reference gauge 290 

stations) were characterized by their dominant flow sources and subsequently referred to as follows 291 

(Table 4): snowmelt (SM), high-volume snowmelt and rain (HSR), low-volume snowmelt and rain 292 

(LSR), winter storms (WS), groundwater (GW), perennial groundwater and rain (PGR), and flashy 293 

ephemeral rain (FER). Of the 91 reference gauge stations, 20 were classified as SM (22%), 11 as 294 

HSR (12%), 22 as LSR (24%), 16 as WS (18%), 2 as GW (2%), 16 as PGR (18%), and 4 as FER 295 

(4%). SM sites exhibit highly seasonal hydrologic regimes with spring snowmelt peak flows, 296 

predictable recession curves, very low summer flows, and minimal winter rain influence. These 297 



 

sites exist along the crest of the Sierra Nevada with most sites in the southern, higher elevation 298 

portion of the mountain range. LSR and HSR sites exhibit similar seasonality but illustrate a 299 

transition towards earlier snowmelt peak and increasing winter rain contributions which follows 300 

their general downstream transition towards the Central Valley lowlands. WS sites exhibit distinct 301 

duration and timing of high flows from the snowmelt influenced sites, driven by winter rain storms. 302 

These sites are characterized by high interannual flow variance due to the variability of winter 303 

storm patterns, and generally follow the spatial distribution of strong orographic precipitation in 304 

the north coast region. GW sites are distinguished by significantly higher and more stable flows 305 

year-round, despite uncertainty associated with the fact that only two reference gauge stations were 306 

used to distinguish this flow class. PGR sites combine the stable, base flow-driven conditions of 307 

GW sites with the winter rain dominated conditions of WS sites in catchments with low annual 308 

streamflow. FER reaches are characterized by the highest interannual flow variance, extended 309 

extreme low flows and large floods, and the lowest average daily streamflows of any class, 310 

although this class is also limited by reference gauge availability (n=3).  311 



 

Table 4. Summary of Dominant Hydrologic Characteristics and Physical and Climatic Catchment Controls on Hydrologic Regimes for the 312 
Natural Flow Classes Identified in California.   313 
 314 



 

The prediction of numerous LSR reaches throughout southern California, the central 315 

coast, and the central valley despite the evident lack of snowmelt influence indicated an inability 316 

of the classification model to accurately distinguish hydrologic regimes in these areas. This is not 317 

surprising given the lack of reference gauge stations in southern California (Fig. 1). Recognizing 318 

the disparity between class predictions and known physiographic and climatic patterns (NRCS 319 

2015) as well as the large spatial footprint of LSR reaches compared to other natural flow 320 

classes, the LSR flow class was further split into two sub-classes. The classification tree 321 

indicated that two distinct groups of catchment attributes were capable of producing an LSR type 322 

hydrologic regime and that these functional groups could be distinguished on the basis of 323 

elevation. Thus LSR reaches were manually split into LSR and low-volume rain and seasonal 324 

groundwater (RGW), representing LSR reaches with average catchment elevations greater than 325 

and less than 1,126 m a.s.l., respectively. 326 

 327 

Physical and climatic catchment controls on hydrologic regimes 328 

Our classification model identified a combination of topographic, geologic, and climatic 329 

attributes as controls on the distinguished hydrologic response (Table 4). Specifically, the 330 

following six catchment attributes were found to be the predictor variables with the greatest 331 

explanatory power for the seven identified hydrologic regimes: mean catchment elevation, 332 

contributing area, mean upstream January precipitation, dominant rock type, percent clay content 333 

in riparian soils, and mean catchment slope (Fig. 6, Table 1). Mean catchment elevation was the 334 

primary splitting variable, distinguishing the SM sites (>2,293 m a.s.l.) from the other six flow 335 

classes (Fig. 6). Contributing area differentiated high-volume HSR and GW reaches from other 336 

reaches, and acted with elevation to define the transition from a highly seasonal snowmelt-337 

dominated to a bimodal snow-rain regime. Climatic setting characterized by average winter 338 

precipitation distinguished WS reaches from other low-elevation reaches in California. Slope (and 339 

drainage density as a proxy variable) was identified as first-order control over the rate and duration 340 

of low-elevation catchment response to precipitation. The delayed response to winter storms 341 

characterized in the hydrograph as a long spring base flow pulse in LSR reaches can be 342 

distinguished from the large, rapid hydrograph response exhibited by FER reaches based on slope. 343 

The classification model also identified geologic rock type and soil permeability as major controls 344 

in distinguishing groundwater-dominated from snowmelt- and rain-dominated hydrologic 345 



 

regimes. Underlying fractured volcanic bedrock distinguished high volume GW reaches from 346 

seasonal, high-volume HSR reaches, while high clay-content (low permeability) soils 347 

distinguished more stable flow PGR reaches from highly seasonal WS reaches in low-elevation 348 

catchments. In selecting natural flow classes (HSR, WS, GW), two alternative combinations of 349 

catchment attributes were capable of driving a similar hydrologic response. In these cases, Table 350 

4 describes both potential catchment attribute combinations. 351 

 352 
Figure 6. Classification Tree Model Identifying the Eight Natural Flow Classes Based on Physical and Climatic Catchment Attributes. If 353 
the stated condition is true, the left branch is followed, otherwise the right branch is followed (see Table 1 for variable definitions). Classes 354 
are defined as follows: SM, snowmelt; HSR, high-volume snowmelt and rain; LSR, low-volume snowmelt and rain; RSG, rain and seasonal 355 
groundwater; WS, winter storms; GW, groundwater; PGR, perennial groundwater and rain; FER, flashy ephemeral rain. 356 
 357 

A fitted misclassification rate of 12% indicates that 80 of the 91 reference stations were 358 

correctly classified based on the six catchment attributes described above (Fig. 6) relative to their 359 

known hydrological regimes from statistical analysis. An out-of-bag error rate of 23% (Cohen’s 360 

κ=0.66, Z=13.7, p<0.001; Landis and Koch 1977) indicates that natural flow classes were 361 

accurately predicted for 77% of the reference gauge stations. The model achieved highest 362 

classification accuracy for the most strongly seasonal annual hydrograph endmembers, WS 363 

(88%) and SM (82%), and the lowest accuracy for the classes with the least number of reference 364 

gauge stations, GW (50%, n=2) and FER (33%, n=4), which were primarily misclassified as 365 

HSR and PGR, respectively. The model misclassified at least one gauge into every natural flow 366 

class except GW, with the highest misclassification into LSR (n=8). 367 

 368 
Final hydrologic classification 369 

The predicted distribution of the eight natural flow classes across California stream reaches 370 

(Figs. 7 and 8) generally corresponds with expectations given known physio-climatic and 371 

hydrologic patterns [see supplemental materials for full description of each natural flow class].  372 



 

Most mountain basins demonstrate a downstream progression from SM to LSR to HSR with 373 

decreasing elevation. WS reaches are generally located along the Pacific coast where the vast 374 

majority of the state’s rainfall occurs or in small lowland basins lacking snowmelt influence, and 375 

GW reaches are generally underlain by fractured volcanic geologic settings expected to produce 376 

stable, high-volume hydrologic regimes.  377 

 378 
Figure 7. Map of the Reach-Scale Hydrologic Classification of California National Hydrography Dataset Streams (excluding Strahler first order 379 
streams) Resulting from the Natural Flow Class Transfer Based on the Classification Tree Model. 380 
 381 



 

 382 
Figure 8. Spatial Footprint of the Final Eight Natural Flow Classes within California (excluding Strahler first-order streams and canals). Classes 383 

are defined as follows: SM, snowmelt; HSR, high-volume snowmelt and rain; LSR, low-volume snowmelt and rain; RGW, rain and seasonal 384 
groundwater; WS, winter storms; GW, groundwater; PGR, perennial groundwater and rain; FER, flashy ephemeral rain 385 

 386 

DISCUSSION 387 

Can distinct hydrologic regimes be distinguished within the study region? 388 

Study results indicate that our hydrologic classification is capable of distinguishing 389 

dominant hydrologic regimes and their physical and climatic catchment controls across California. 390 

Seven hydrologic regimes were identified, characterized by distinct combinations of snowmelt, 391 

rain, and groundwater flow sources and resulting streamflow patterns (Fig. 4; Fig. 5). The high 392 

performance of the cluster analysis (DBI=1.45, CSI=0.71) and classification model (77% 393 

accuracy, κ =0.66) achieved in this study compared to other similar studies (e.g., Liermann et al. 394 

2011; Snelder et al. 2009; Chinnayakanahalli et al. 2011; McManamay et al. 2014) is very 395 

encouraging. This provides some confidence that the identified dominant hydrologic regimes are 396 

derived from similarities in the hydrologic function of catchments characterized by similar 397 

catchment attributes.  However, the focus on streamflow means that we are limited in the degree 398 

of detail regarding hydrologic function that can be extracted from such an integrated measure. 399 



 

Despite overall high performance, limited FER and GW reference gauge stations and the 400 

lack of reference gauge stations in southern California somewhat constrain the classification’s 401 

ability to accurately predict hydrologic regimes of these classes and parts of California. By 402 

considering gauge stations with both unimpaired (n=75) and naturalized (n=16) streamflow time-403 

series, we were able to increase the number and distribution of reference gauge stations and 404 

reduce the systematic bias towards small, high elevation basins. However, the minimum record 405 

length required (> 15 years) and the choice of hydrologic impairment thresholds substantially 406 

limited reference gauge station availability, thus constraining classification performance (Olden 407 

et al. 2012).  The final classification is therefore expected to better predict hydrologic regimes in 408 

the regions of the state with more reference gauge stations and should be applied with caution in 409 

regions with insufficient reference gauge stations. Future work could improve the performance 410 

of the classification by incorporating more gauges stations in these regions by loosening the 411 

minimum time series length and impairment threshold requirements. 412 

 413 

Can identified explanatory catchment attributes help reveal the dominant processes distinguishing 414 

distinct hydrologic regimes? 415 

The explanatory catchment attributes identified in our study showed wide agreement with 416 

existing hydrologic classification studies. For instance, elevation was also found by Singh et al. 417 

(2014) and Liermann et al. (2011) to be the primary control distinguishing snowmelt- from rain-418 

dominated hydrologic regimes. Contributing area was found by Sawicz et al. (2011) and Belmar 419 

et al. (2011) to differentiate reaches of high versus low flow magnitudes, supporting its 420 

identification as the foremost control distinguishing HSR reaches from lower volume SM and LSR 421 

reaches in California. Sawicz et al. (2011) also found climate to exert a strong influence on 422 

catchment function and response in the eastern United States. Thus, although hydrology has not 423 

yet established a common catchment classification system (Wagener et al. 2007; Sawicz et al. 424 

2011), the similarities in hydrologic regimes and catchment controls identified in our and the above 425 

studies suggest that a first-order classification of reaches based on upstream catchment attributes 426 

is warranted for California. 427 

Only six of the 27 catchment attributes were found to be of significant explanatory value in 428 

predicting the seven natural flow classes with high accuracy. To our surprise, despite their known 429 

influence on catchment hydrologic response, the CART model did not select basin shape, relief, 430 



 

and surficial geology as explanatory variables in the classification tree. Similarly, no climatic 431 

attributes (e.g., temperature, precipitation) other than January precipitation were recognized as 432 

explanatory variables. The significance of topography and geology in addition to climate for 433 

distinguishing flow regimes in California contrasts with findings of other classifications (e.g., 434 

Liermann et al. 2011; Chinnayakanahalli et al. 2011; Alba Solans and Poff 2013) that identified 435 

climate as the sole controlling attribute on hydrologic response. From a process perspective, this 436 

indicates that the dominant hydrologic regimes found in California are controlled by physical 437 

catchment attributes that influence runoff generation processes in addition to climate, highlighting 438 

the need to consider local controls (e.g., topography, soil, geology) in hydrologic classification 439 

that might act on the sub-catchment or reach-scale hydrology of a basin. 440 

The inability of our classification to distinguish between LSR and RSG hydrologic regimes 441 

highlights a significant limitation of the use of automatic, data-driven classifications for 442 

hydrologic analysis. While numerous clustering and regression algorithms have been applied in 443 

hydrologic classification, with the best algorithm depending primarily on the study objectives 444 

(Olden et al. 2012), we found an additional need for expert validation of the classification given 445 

external limitations on input data. Our approach of manually splitting a natural flow class 446 

because the classification model was incapable of resolving evident differences in catchment 447 

controls and hydrologic responses dramatically improved classification results in terms of the 448 

model’s agreement with known physiographic and hydrologic patterns. Using the structure of the 449 

classification model in addition to regional expertise to define a splitting criterion (in our case 450 

elevation) increased the objectivity of the process and provided additional information regarding 451 

the differences in the driving catchment processes of the two sub-classes. Alternatively, adding 452 

other catchment attributes, such as glacial history or soil-to-bedrock ratio (Peterson et al. 2008), 453 

may further improve our classification’s ability to capture distinct catchment processes and their 454 

effect on the hydrologic response of California catchments.  455 

 456 

How do the identified dominant hydrologic regimes compare with those found in California field 457 

and modeling studies and in other hydrologic classifications? 458 

Comparison with California field and modeling studies. 459 

In the absence of a statewide hydrologic classification, existing field and modeling studies 460 

can be used to evaluate our results for selected physiographic regions within California. Overall 461 



 

we found that the identified hydrologic regimes and catchment controls were generally consistent 462 

with prior, local knowledge of rainfall-runoff processes in California (e.g., Mount 1995; Yarnell 463 

et al. 2010; Hunsaker et al. 2012). The transition from a highly seasonal SM regime to a high 464 

baseflow, bimodal HSR regime closely tracks the elevation gradient from the Sierra Nevada to the 465 

Central Valley. This is consistent with Hunsaker et al.’s (2012) finding that mixed rain-snow and 466 

snowmelt-dominated flow regimes could be differentiated solely on the basis of elevation for eight 467 

headwater catchments of the Kings River. Furthermore, their elevation threshold for distinguishing 468 

between these flow regimes (2,287 m a.s.l.) almost exactly matches the  threshold identified by 469 

our classification model (2,293 m) for distinguishing SM from LSR reaches. Also similar to our 470 

study, annual discharge was found to increase with elevation over the eight catchments, indicative 471 

of a higher snow-rainfall ratio and a lesser role of evapotranspiration in snowmelt-dominated vs. 472 

mixed rain-snow catchments (Hunsaker et al. 2012). An estimate of water balance components 473 

along an elevation gradient in the American River basin suggests that runoff and 474 

evapotranspiration are about equal at 1,200 m a.s.l. (40% of total water balance each), whereas 475 

runoff increases to 68% at 2,100 m as the evapotranspiration effect decreases (Armstrong and 476 

Stidd 1967). These topographic controls over catchment function are profoundly similar to the two 477 

elevation thresholds identified in our study (1,126 and 2,293 m), indicating that the empirical 478 

classification model is in fact identifying similar catchment controls on rainfall-runoff response. 479 

Relationships between natural flow classes and watershed-specific model parameters 480 

estimated for a hydrologic model of the western Sierra Nevada (Young et al. 2009) further 481 

corroborate the physical basis of our hydrologic classification. Of the 15 watersheds considered 482 

by Young et al. (2009), all but five are classified at their outlet as HSR by our hydrologic 483 

classification; four watersheds (Cosumnes, Calaveras, Kaweah, and Tule) are classified as LSR 484 

and one (Kern) as SM. The SM watershed exhibits much higher soil water storage capacity (1,181 485 

mm) and lower hydraulic conductivity (30 mm/week) than the other watersheds based on model 486 

parameters; the LSR watersheds exhibit similar but less extreme trends. The high storage capacity 487 

and low hydraulic conductivity of SM and LSR watersheds implicate saturation overland flow as 488 

the dominant runoff process in these reaches, as infiltration rates far exceed precipitation 489 

intensities (Dunne and Black 1970; Dahlke et al. 2012). 490 

 491 



 

Comparison with other regional hydrologic classifications. 492 

Our catchment classification model was highly accurate (77%) and exceeded the predictive 493 

capacities of classification models reported elsewhere (e.g., 75%, Liermann et al. 2011; 61%, 494 

Snelder et al. 2009; 70%, Chinnayakanahalli et al. 2011; 75% McManamay et al. 2014). We 495 

hypothesize that the high performance of our hydrologic classification may be attributable to the 496 

suggestion by Sawicz et al. (2011) that classification results are largely controlled by the particular 497 

gradients present and datasets analyzed in the study region. Sawicz et al. (2011) found that 498 

catchment attributes exhibiting steep gradients across regions tend to emerge as dominant controls 499 

over hydrologic response in regional hydrologic classifications, exerting a stronger control on 500 

separating the catchments into different classes than more spatially homogeneous attributes. 501 

Similar results were obtained by Sanborn and Bledsoe (2006) and Liermann et al. (2011) that 502 

identified climate as the only dominant control over hydrologic response in regions with steep 503 

climatic gradients, while topographic and geologic attributes exhibited minimal influence. The fact 504 

that California exhibits steep gradients across all three catchment variables representing primary 505 

controls on hydrologic behavior (Wolock et al. 2004) ensures that no single variable dominates 506 

the classification. The significance of topographic (elevation, area, slope), geologic (rock type, soil 507 

type), and climatic (winter precipitation) attributes for explaining differences in identified 508 

hydrologic regimes corroborates the theory that watersheds should be grouped by similarity in 509 

topography, geology, and climate (Winter 2001; Wolock et al. 2004). Thus, the influence of 510 

dominant environmental gradients on hydrologic classification and the regionalization of 511 

hydrologic regimes need not necessarily discourage its application or require the splitting up of a 512 

region into smaller subregions, as suggested by Sawicz et al. (2011). Rather, it may indicate that 513 

hydrologic classification could provide a tool better suited for Mediterranean regions, which 514 

generally exhibit steep gradients across climate, topography, and geology (Peel et al. 2007), than 515 

regions with a single dominant environmental gradient. 516 

 517 

Insights for environmental flows setting in California  518 

Hydrologic classifications form the template for developing hypothetical relationships 519 

between hydrologic characteristics and ecological responses (Arthington 2012; Poff et al. 2010; 520 

McManamay et al. 2015). The significance of the natural flow regime for native river ecosystems 521 

(Richter et al. 1996; Poff et al. 1997) has generally been considered as appropriate for California 522 



 

rivers and streams (Marchetti and Moyle 2001; Brown and Bauer 2010). A recent ecological 523 

assessment of hydrologic alterations on large California rivers (Brown and Bauer 2010) indicated 524 

that changes to key components of the natural flow regime (e.g., spring high flows, summer low 525 

flows) had major implications for native and alien fish species assemblages. However, relating 526 

ecological measures to hydrologic regimes is currently limited in California because unimpaired 527 

streamflow records are unavailable for many locations of interest where biological data exists (e.g. 528 

Ode 2007; Santos et al. 2014). The spatial extent and reach scale of the proposed hydrologic 529 

classification are expected to substantially improve the coincidence of biological and hydrologic 530 

datasets statewide. Future comparisons of ecological patterns between natural and hydrologically 531 

altered streams within each of the eight natural flow class distinguished by our study are therefore 532 

expected to yield flow–ecological response relationships which can provide the basis for statewide 533 

environmental flow standards (see Poff et al. 2010). 534 

The four flow components identified here as best capable of distinguishing natural 535 

hydrologic regimes (low flow characteristics, high flow characteristics, seasonality, and 536 

predictability, Table 3) highlight key characteristics of Mediterranean rivers [e.g., extreme high 537 

and low flows, high seasonality, and inter-annual variability (Gasith and Resh 1999)]. The 538 

hydrologic regimes distinguished in this study are therefore expected to be capturing ecologically 539 

significant distinctions rather than purely empirical groupings. Native Mediterranean biota have 540 

established life history traits providing resilience to the predictable and periodic extremes of 541 

these dynamic systems (Gasith and Resh 1999; Bonada et al. 2007), but these adaptations may 542 

make them particularly vulnerable to flow alterations (Lytle and Poff 2004). Improving 543 

understanding of the role of these key Mediterranean flow components in promoting natural 544 

ecosystem functions (Arthington 2012; Yarnell et al. 2015) in each of the distinguished natural 545 

flow classes would help to identify opportunities for environmental flow releases and link flow 546 

targets directly to driving ecosystem functions in stream reaches of each natural flow class. This 547 

would support the development of ecological performance metrics for regional adaptive 548 

management. 549 

Stratification of California streams by natural flow class is expected to support the 550 

development of mechanistic associations between hydrologic classes and ecological 551 

characteristics and constrain the data and resource requirements of such efforts (e.g. Monk et al., 552 

2006; Chinnayakanahalli et al., 2011; Rolls and Arthington, 2014; McManamay et al. 2015). For 553 



 

example, based on the established ecological significance of dry-season low flow duration and 554 

magnitude for native species in LSR-dominated streams (Gasith and Resh 1999; Yarnell et al. 555 

2015), the archetypal LSR low flow characteristics distinguished by our classification (Fig. 5; 556 

Table 3) could be used to develop preliminary flow targets for classified LSR reaches of interest 557 

for restoration. Flow targets could be based on expected ranges of unimpaired streamflow 558 

timing, magnitude, duration, frequency, and rate-of-change. For instance, the natural range of 559 

extreme low flow duration exhibited by unimpaired LSR rivers (Fig. 5) could be used as an 560 

initial flow threshold for water abstractions to support imperiled native biota over large areas in 561 

the absence of sufficient reach-specific data. In this manner, highly regulated LSR stream 562 

reaches in California could be targeted for recovery of these natural low flow characteristics or 563 

for a large-scale evaluation of the ecological impacts of removing this functional flow 564 

component (Brown and Bauer 2010).  565 

The ultimate ecological value of the proposed classification lies in its ability to reduce natural 566 

hydrologic variability to a level at which functionally similar groups of stream reaches can be 567 

identified for future flow – ecology analysis. Future research that extends the organizational 568 

framework presented here by further stratifying natural flow classes based on ecologically relevant 569 

hydrologic distinctions will increase the predictive power of discriminant relationships between 570 

specific flow regime components and biotic and abiotic functions for each class. For example, 571 

further dividing streamflow records within a natural flow class based on season (e.g., fall vs. 572 

winter) or geomorphic setting (i.e., confined vs. unconfined) would allow for the separate analysis 573 

of streamflow patterns with respect to factors of known ecological significance not addressed here 574 

(Junk et al. 1989; Wohl et al. 2015; Yarnell et al. 2015). Stratifying biomonitoring campaigns with 575 

respect to natural flow classes and proposed sub-classes to obtain ecohydrologic information 576 

would support the development and testing of physically-based, statistically defensible 577 

relationships between hydrologic characteristics and flow-driven geomorphic and ecological 578 

functions.  579 

 580 

CONCLUSIONS 581 

This study presents a hydrologic classification for the State of California to meet the 582 

recognized need for improved broad-scale environmental management of the state’s many 583 

impaired rivers. The classification evaluates the diversity and distribution of natural hydrologic 584 



 

regimes present in a large, heterogeneous Mediterranean region using available unimpaired 585 

streamflow and geospatial datasets. From a management perspective, the hydrologic classification 586 

provides a footprint of the locations of distinct dominant hydrologic regions across California. 587 

This classification, combined with ecological and geomorphic information, could be used to design 588 

functional flow targets that could then be incorporated with current human water management 589 

objectives through an adaptive management framework. The ultimate utility of this classification 590 

is demonstrated by its ability to distinguish distinct hydrologic regimes and characterize dominant 591 

physical and climatic catchment controls on hydrology with a strong physical basis and expected 592 

ecological relevance. Eight natural flow classes were distinguished for California and results were 593 

corroborated by high predictive accuracy and regional performance. Our analyses revealed that 594 

topographic, geologic, and climatic attributes all explained significant variation in these hydrologic 595 

regimes. This supports the view that spatial variation in hydrology is determined by interactions 596 

among these factors at multiple spatial and temporal scales (Snelder et al. 2005; Sanborn and 597 

Bledsoe 2006; Kennard et al. 2010) and the need to consider local hydrologic controls acting at 598 

the reach scale by means of a spatially-explicit hydrologic classification. 599 

 600 

SUPPORTING INFORMATION 601 

Additional supporting information may be found online under the Supporting Information 602 

tab for this article: A climate-based literature review of existing hydrologic classifications, a full 603 

description of the hydrologic time-series uncertainty analysis with gauge station specific results, 604 

and additional details on each of the identified natural flow classes. 605 
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