El Agua:
Derecho Social
Editorial

3 EL AGUA:
De la física a la biología, y ahora a lo social

El Agua: Derecho Social

4 H₂O: nuestro alfa y omega, nuestro principio y fin...
Maestro Rodrigo Soto

7 Agua, integridad de ecosistemas y sustentabilidad
Doctor Salvador Contreras Balderas

12 Operación y mantenimiento del sistema de abasto de agua potable
Ingeniero Francisco Cantú Ramos

16 Nuevas tecnologías en la planeación y manejo del agua
Maestro Samuel Sandoval Solís

18 Comunicación y cultura del agua en Nuevo León
Licenciada Elizabeth Cerda Andrade

22 Uso y manejo del agua en los cultivos
Ph. D. Rigoberto E. Vázquez A.

24 Nuevo León, vanguardia nacional en tratamiento de aguas residuales
Licenciado Rodolfo Gómez Acosta

26 El saneamiento del agua residual (94 por ciento) en Nuevo León
Ingeniero Salvador del Cos Zorrilla

29 Sistema Cero Descargas para Re-uso del agua en la Industria
Doctor Felipito E. Chavarria Pernández

32 El agua, determinante para la creación, desarrollo y futuro de las ciudades
M. C. Rodrigo Hiram Todd Lozano

El agua es el origen de la vida en el planeta, pero también puede ser, si la seguimos contaminando como hasta ahora, el fin de la misma, advierte el maestro Rodrigo Soto, página 4; el doctor Salvador Contreras, página 7 analiza el vial líquido, así como la integridad de los ecosistemas y la sustentabilidad.

El sistema de agua potable en el Monterrey metropolitano es objeto de análisis por parte del ingeniero Francisco Cantú Ramos, página 12, en tanto que el maestro Samuel Sandoval aborda el tema de las nuevas tecnologías en la planeación y manejo del agua, página 16, y la licenciada Elizabeth Cerda trata de la comunicación y cultura del agua en Nuevo León, página 18.
Nuevas tecnologías en la planeación y manejo del agua

Samuel Sandoval Solís

En el ámbito hídrico-ambiental, actualmente se utilizan múltiples herramientas para la planeación, manejo y evaluación de políticas de operación y uso del agua. En el presente documento me permito enunciar sólo algunas de estas herramientas, realizando el análisis desde una perspectiva diferente, mediante el uso de la pirámide del conocimiento.

De acuerdo con Russel Ackoff, la jerarquía del conocimiento o pirámide del conocimiento, está dividida en cinco niveles, los cuales varían desde la apreciación de sucesos aislados, hasta la obtención de sabiduría, como se muestra en la figura 1.

En la apreciación de sucesos aislados, en el ambiente hídrico-ambiental se utilizan estaciones hidrométricas automatizadas y semi-automatizadas, para la medición de gastos en cauces de ríos, mediante medidores acústicos de flujo, los cuales permiten estimar el gasto en determinado punto de interés; así como estaciones climatológicas automatizadas, que registran las variables de temperatura, humedad, presión atmosférica, evaporación, punto de rocío, entre otras variables, sólo por mencionar algunos ejemplos.

INFORMACIÓN CLIMATOLÓGICA E HIDRÓLOGICA

Una vez que se recopilan los valores o registros de los sucesos aislados, dichos valores se convierten en datos, los cuales son ordenados a conveniencia del propietario de la base de datos o del uso al que se le vaya a destinar. Dos de los ejemplos más significativos en esta categoría son el ERIC (Extractor Rápido de Información Climatológica) y el BANDAS (Banco Nacional de Datos de Aguas Superficiales), en los cuales se recolectó la información climatológica e hidrológica, respectivamente. Una vez que se realiza el análisis de los registros y/o se les asigna algún componente adicional, tal como la localización geográfica de los registros, los datos se convierten en información.

Un ejemplo en este nivel del conocimiento lo constituyen los Sistemas de Información Geográfica o SIG’s, que son bases de datos geo-referenciadas; es decir, son sistemas que muestran la información asociada a algún sitio en el espacio. Finalmente, si se entienden los patrones que generan el comportamiento de la información, en ese momento se obtiene el conocimiento. Los Sistemas para el

Soporte de Decisiones (SSD’s) son sistemas que permiten simular el comportamiento de un fenómeno en particular, para determinar cuáles son sus patrones de comportamiento.

Figura 2.- HIS de la Cuenca del Río Bravo. (Patino, 2005)

SISTEMAS DE INFORMACIÓN GEOGRÁFICA

Referente a la administración de información, los Sistemas de Información Geográfica (SIG’s) son herramientas indispensables para la planeación y manejo del agua. En el caso específico de SIG’s construidos para almacenar información hídrológica, estos modifican su nombre a SIH’s o Sistemas de Información Hidrológica, pero el fundamento es el mismo. En México, existen varios ejemplos del uso de SIH’s para la planeación y manejo del agua. Uno de los más sobresalientes es el SIH de la cuenca del Río Bravo (Patino, 2005).

En esta cuenca, compartida entre México y los Estados Unidos, se construyó un SIH de cantidad y calidad del agua, con los registros hidrométricos, climatológicos y de calidad del agua de toda la cuenca para ambas naciones. El SIH del Río Bravo almacenó 5.26 millones de datos asociados a dos mil 115 puntos de monitoreo en toda la cuenca (Figura 2).

Los datos asociados en este SIH varían desde escrutinio en cauces, hasta valores de contaminantes en ríos. Los puntos de monitoreo fueron considerados como estaciones hidrométricas, climatológicas y de calidad del agua, en su mayoría. La base de datos fue construida como un proyecto conjunto entre la Comisión Nacional del Agua (CONAGUA), el Instituto Mexicano de Tecnología del Agua (IMTA), la Comisión de Calidad del Medio Ambiente de Texas (Texas Commission on Environmental
CONOCIMIENTO

Quality, TCEQ, el Centro de Investigación de Recursos Hídricos de la Universidad de Texas en Austin (Center for Research of Water Resources of The University of Texas at Austin) y el Banco de Desarrollo para América del Norte (NADBank).

Como es posible apreciar, el esfuerzo conjunto de organizaciones de ambos países fue determinante para el éxito de este proyecto. En la actualidad, este SIH es utilizado por la Conagua y el TCEQ para la administración de sus bases de datos. El SIH de la cuenca del Río Bravo es uno de los Sistemas de Información Hidrológicos más completos en todo el mundo.

Figura 3.- Cuenca del Río Fuerte.

SISTEMAS PARA EL SOPORTE DE DECISIONES

Referente a la obtención del conocimiento, los Sistemas para el Soporte de Decisiones (SSD) son sistemas que permiten determinar los patrones de comportamiento de las cuencas, por lo que forman una parte trascendental en la planeación y manejo del agua. Los SSD son herramientas que ayudan para la toma de decisiones, mediante la evaluación de las políticas de uso y manejo del agua. Normalmente, los SSD son modelos de simulación que representan el comportamiento de una cuenca.

Se recomienda que los SSD tengan como soporte a un SIH, ya que de esta forma el sistema se vuelve interactivo, y se obtienen datos de entrada del SIH, evaluando políticas de operación mediante modelos de simulación (SSD) y regresando los resultados al SIH para su almacenamiento y evaluación espacial.

Un ejemplo de SSD es el modelo de simulación para la cuenca del Río Fuerte (Figura 3). El SSD de la cuenca del Río Fuerte (Figura 4) está siendo construido con el programa WEAP (Water Evaluation And Planning System). El SSD de la Cuenca del Río Fuerte simula el comportamiento de la cuenca, mediante la declaración de las políticas de operación. La construcción del SSD del Río Fuerte es un esfuerzo conjunto del Centro de Investigación de Recursos Hídricos de la Universidad de Texas en Austin (Center for Research of Water Resources of The University of Texas at Austin), el Instituto Politécnico Nacional y la Comisión Federal de Electricidad. En este momento, el SSD de la cuenca del Río Fuerte está siendo calibrado y se espera obtener información suficiente para determinar las políticas de operación de las presas Luis Donaldo Colosio “Huites” y Miguel Hidalgo “El Fuerte”, para la optimización en la generación de energía eléctrica.

Figura 4.- Sistema para el Soporte de Decisiones de la Cuenca del Río Fuerte.

IMPORTANCIA DEL FACTOR HUMANO

Finalmente, para la sabiduría no existe herramienta tecnológica que la pueda reemplazar. Esta característica debe residir en las personas encargadas de la toma de decisiones. Afortunadamente, como se ejemplificó en este artículo, para la toma de decisiones ya se cuenta con herramientas suficientes para la elección de una decisión adecuada. No obstante, el factor humano será el que en última instancia decidirá el rumbo de la planeación y manejo del agua.

Figura 5.- Pirámide del Conocimiento asociada a la planeación y manejo del agua.